首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A one-step derivatization and extraction technique for the determination of primary amines in river water by liquid-phase microextraction (LPME) is presented. In this method the primary amines are derivatized with pentafluorobenzaldehyde (PFBAY) in aqueous solution and extracted by dynamic hollow fiber-protected-LPME (HF-LPME) simultaneously. The effects of solvent selection, sample agitation, extraction time, extraction temperature and salt concentration on the extraction performance are investigated. High enrichments (172-244-fold) and good repeatabilities (RSD less than 7.2%) were obtained. Linearity in this developed method was ranging from 1 to 500 ng/ml, and the correlation coefficients (R2) were between 0.992 and 0.998. Comparisons of sensitivity and precision between dynamic HF-LPME and single-drop liquid-phase microextraction (SDME) were also made.  相似文献   

2.
Simultaneous dispersive liquid-liquid microextraction (DLLME) and derivatization combined with gas chromatography-electron-capture detection (GC-ECD) was used to determine chlorophenols (CPs) in water sample. In this derivatization/extraction method, 500 microL acetone (disperser solvent) containing 10.0 microL chlorobenzene (extraction solvent) and 50 microL acetic anhydride (derivatization reagent) was rapidly injected by syringe in 5.00 mL aqueous sample containing CPs (analytes) and K(2)CO(3) (0.5%, w/v). Within a few seconds the analytes derivatized and extracted at the same time. After centrifugation, 0.50 microL of sedimented phase containing enriched analytes was determined by GC-ECD. Some effective parameters on derivatization and extraction, such as extraction and disperser solvent type and their volume, amount of derivatization reagent, derivatization and extraction time, salt addition and amount of K(2)CO(3) were studied and optimized. Under the optimum conditions, enrichment factors and recoveries are in the range of 287-906 and 28.7-90.6%, respectively. The calibration graphs are linear in the range of 0.02-400 microg L(-1) and limit of detections (LODs) are in the range of 0.010-2.0 microg L(-1). The relative standard deviations (RSDs, for 200 microg L(-1) of MCPs, 100 microg L(-1) of DCPs, 4.00 microg L(-1) of TCPs, 2.00 microg L(-1) of TeCPs and PCP in water) with and without using internal standard are in the range of 0.6-4.7% (n=7) and 1.7-7.1% (n=7), respectively. The relative recoveries of well, tap and river water samples which have been spiked with different levels of CPs are 91.6-104.7, 80.8-117.9 and 83.3-101.3%, respectively. The obtained results show that simultaneous DLLME and derivatization combined with GC-ECD is a fast simple method for the determination of CPs in water samples.  相似文献   

3.
Trace analysis of phenolic compounds in water was performed by coupling single-drop microextraction (SDME) with in-syringe derivatization of the analytes and GC-MS analysis. The analytes were extracted from a 3ml sample solution using 2.5microl of hexyl acetate. After extraction, derivatization was carried out in syringe barrel using 0.5microl of N,O-bis(trimethylsilyl)acetamide. The influence of derivatizing reagent volume, derivatization time and temperature on the yield of the in-syringe silylation was investigated. Derivatization reaction is completed in 5min at 50 degrees C. Experimental SDME parameters, such as selection of organic solvent, sample pH, addition of salt, extraction time and temperature of extraction were studied. Analytical parameters, such as enrichment factor, precision, linearity and detection limits were also determined. The limits of detection were in the range of 4-61ng/l (S/N=3). The relative standard deviations obtained were between 4.8 and 12% (n=5).  相似文献   

4.
A fast and simple gas chromatography-mass spectrometry (GC-MS) method for determination of forty-one pesticide residues in maize is introduced. The sample preparation involves liquid-liquid partitioning with acetonitrile in presence of anhydrous MgSO(4) and NaCl (QuEChERS) followed by dispersive liquid-liquid microextraction (DLLME) using carbon tetrachloride as extractive solvent and the extract obtained by QuEChERS as dispersive solvent. The main factors influencing DLLME efficiency including extractive solvent type and volume as well as the volume of dispersive solvent were evaluated in this study. The DLLME procedure effectively provides an enrichment of the extract and a cleanup of certain polar matrix components, which can maximize the sensitivity when a single quadrupole MS is used. For validation purposes, recoveries studies were carried out at two concentration levels, yielding recovery rates in the range 70-120% for 82% of the analytes. A good linearity and precision, with relative standard deviations generally below 20% were obtained for all forty-one pesticides. The limits of detection obtained were lower than 19 μg kg(-1) for more than 63% of the analytes. In two of a total of ten samples of maize, residues of lindane, tefluthrin, pirimicarb, folpet and bifenthrin were found, although at levels below the maximum limit established for this kind of samples.  相似文献   

5.
Dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) with simultaneous derivatization followed by high-performance liquid chromatography-diode array detection (HPLC-DAD) was applied for preconcentration and determination of primary and secondary aliphatic amines in environmental water samples. A ternary mixture consisting of a disperser, an extractant and a derivatization reagent was used for the simultaneous derivatization and extraction of aliphatic amines in different water samples. The effects of various experimental parameters on derivatization and extraction efficiency were studied simultaneously using experimental design. A Plackett-Burman design was performed for screening of variables in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by using a Box-Behnken design (BBD) and the response surface equations were derived. Under optimal conditions, the preconcentration factors were between 210 and 290. The limit of detections (LODs) ranged from 0.005 to 0.02 μg/L and dynamic linear ranges (DLRs) of 0.05-500 and 0.1-500 μg/L were obtained for most of analytes. The performance of the method was evaluated for extraction and determination of primary and secondary aliphatic amines in environmental water samples in micrograms per liter and satisfactory results were obtained (RSDs <12.5%).  相似文献   

6.
Cortada C  Vidal L  Canals A 《Talanta》2011,85(5):2546-2552
A fast, simple, inexpensive, sensitive, efficient and environmental friendly direct ultrasound-assisted dispersive liquid-liquid microextraction (DUSA-DLLME) procedure has been developed to concentrate five nitroaromatic explosives from water samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). An efficient ultrasonic probe has been used to radiate directly the samples producing very fine emulsions from immiscible liquids. A D-optimal design was used for optimizing the factors and to evaluate their influential upon extraction. The optimum experimental conditions were: sample volume, 10 mL; extraction time, 60 s; cycles, 0.6 s(s−1); power of ultrasound energy, 40% (70 W); and, extractant solvent (chlorobenzene) volume, 20 μL. Under the optimized experimental conditions the method presents good level of repeatability with coefficients of variation under 6% (n = 8; spiking level 10 μg L−1). Calculated calibration curves gave high level of linearity with correlation coefficient values between 0.9949 and 0.9992. Limits of detection were ranged between 0.03 and 0.91 μg L−1. Finally, the proposed method was applied to the analysis of two types of water samples, reservoir and effluent wastewater. The samples were previously analysed and confirmed free of target analytes. At 5 μg L−1 spiking level recovery values ranged between 75 and 96% for reservoir water sample showing that the matrix had a negligible effect upon extraction. However, a noticeable matrix effect (around 50% recovery) was observed for effluent wastewater sample. In order to alleviate this matrix effect, the standard addition calibration method was used for quantitative determination. This calibration method supplied recovery values ranged between 71 and 79%. The same conclusions have been obtained from an uncertainty budget evaluation study.  相似文献   

7.
A new method is reported for the simultaneous extraction and derivatization of amphetamine (AM) and methylenedioxyamphetamine (MDA) using headspace hollow fiber protected liquid-phase microextraction (HS-HF-LPME); quantitation is by gas chromatograph-mass spectrometry in the selected ion monitoring (SIM) mode. The derivatizing reagent, pentafluorobenzaldehyde (PFBAY), was added to the extraction solvent. The analytes, volatile and basic, were released from the sample matrix into the headspace first, then extracted and derivatized in the solvent. After that, 2 microl of extract was directly injected into the GC-MS system. Parameters affecting extraction efficiency were investigated and optimized. This method showed good linearity in the concentration range investigated (50-350 ng ml(-1) for AM and 50-700 ng ml(-1) for MDA). Excellent repeatability of the extraction (RSD< or = 4%, n=5), and low limits of quantitation (0.25 ng ml(-1) for AM and 1.00 ng ml(-1) for MDA) were achieved. The feasibility of the method was demonstrated by analyzing human urine samples.  相似文献   

8.
叶曦雯  何静  李莹  牛增元  张甜甜  罗忻  邹立  连素梅 《色谱》2020,38(2):255-263
建立了液液萃取-分散液液微萃取-气相色谱-质谱联用技术测定纺织废水中痕量偶氮染料的方法。废水中的偶氮染料在碱性条件下经连二亚硫酸钠还原成芳香胺后,先用叔丁基甲醚液液萃取、盐酸反萃进行预浓缩及净化;再以乙腈-氯苯体系进行分散液液微萃取,气相色谱-质谱测定。对前处理条件进行了优化,考察了酸碱度及盐效应对芳香胺萃取效率的影响,结果表明:液液萃取过程中加入30 g NaCl,分散液液微萃取过程中加入1 mL 5 mol/L的NaOH调节体系至碱性才能达到较好的萃取效率。在优化的实验条件下,21种目标物均呈现良好的线性关系,其中13种芳香胺的线性范围为0.05~10μg/L, 7种芳香胺的线性范围为0.05~5μg/L, 2,4-二氨基苯甲醚的线性范围为20~100μg/L,相关系数为0.996~0.999。20种芳香胺的检出限可达0.05μg/L, 2,4-二氨基苯甲醚检出限为20μg/L。印染、机织、印花等实际废水加标试验表明,方法的回收率为75.6%~115.1%。该方法富集倍数高,检出限低,适用于纺织废水中痕量禁用偶氮染料的检测。  相似文献   

9.
A new method was developed for analysing 4-ethylguaiacol and 4-ethylphenol in the aroma of red wines using dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry detection (GC-MS). Parameters such as extraction solvent, sample volume and disperser solvent were studied and optimised to obtain the best extraction results with the minimum interference from other substances, thus giving clean chromatograms. The response linearity was studied in the usual concentration ranges of analytes in wines (50-1500 microg/L). Repeatability and reproducibility of this method were lower than 5% for both volatile phenols. Limits of detection and limits of quantification were also determined, and the values found were 28 and 95 microg/L for 4-ethylguaiacol and 44 and 147 microg/L for 4-ethylphenol, respectively. This new method has been used for the determination of the volatile phenols concentration in different samples of Tannat wine affected by Brettanomyces contamination.  相似文献   

10.
A simple analytical procedure based on single-drop microextraction combined with in-syringe derivatization and GC-MS was developed for determination of some phenolic acids in fruits and fruit juices. Cinnamic acid, o-coumaric acid, caffeic acid, and p-hydroxybenzoic acid were used as model compounds. The analytes were extracted from a 3-mL sample solution using 2.5 microL of hexyl acetate. The extracted phenolic acids were derivatized inside the syringe barrel using 0.7 microL of N,O-bis(trimethylsilyl)acetamide before injection into the GC-MS. The influence of derivatization conditions on the yield of in-syringe silylation was studied. Experimental SDME parameters such as selection of organic solvent, solvent volume, extraction time, extraction temperature, pH, and ionic strength of the solution on the extraction performance were studied. The method provided fairly good precision for all compounds (2.4-11.9%). Detection limits were found to be between 0.6 and 164 ng/mL within an extraction time of 20 min in the GC-MS full scan mode.  相似文献   

11.
A rapid, sensitive and environmentally friendly method for the analysis of 14 anilines in water samples by dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) prior to gas chromatography–mass spectrometry (GC-MS) was developed and optimized. In the proposed method, cyclohexane was used as the extraction solvent as its toxicity was much lower than that of the solvent usually used in dispersive liquid–liquid microextraction (DLLME). In the optimized conditions, the method exhibited good analytical performance. Based on a signal-to-noise ratio of 3, limits of detection for anilines were in the range of 0.07 to 0.29 μg L−1, and the linear range was 0.5–200 μg L−1 with regression coefficients (r 2) higher than 0.9977. It was efficient for qualitative and quantitative analysis of anilines in water samples. The relative standard deviations varied from 2.9 to 8.6 % depending on different compounds indicating good precision. Tap water and river water were selected for evaluating the application to real water samples. The relative recoveries of anilines for the two real samples spiked with 10 μg L−1 anilines were in the scope of 78.2–114.6 % and 77.3–115.6 %, respectively.  相似文献   

12.
A rapid and simple dispersive liquid-liquid microextraction (DLLME) has been developed to preconcentrate eighteen organochlorine pesticides (OCPs) from water samples prior to analysis by gas chromatography-mass spectrometry (GC-MS). The studied variables were extraction solvent type and volume, disperser solvent type and volume, aqueous sample volume and temperature. The optimum experimental conditions of the proposed DLLME method were: a mixture of 10 μL tetrachloroethylene (extraction solvent) and 1 mL acetone (disperser solvent) exposed for 30 s to 10 mL of the aqueous sample at room temperature (20 °C). Centrifugation of cloudy solution was carried out at 2300 rpm for 3 min to allow phases separation. Finally, 2 μL of extractant was recovered and injected into the GC-MS instrument. Under the optimum conditions, the enrichment factors ranged between 46 and 316. The calculated calibration curves gave a high-level linearity for all target analytes with correlation coefficients ranging between 0.9967 and 0.9999. The repeatability of the proposed method, expressed as relative standard deviation, varied between 5% and 15% (n = 8), and the detection limits were in the range of 1-25 ng L−1. The LOD values obtained are able to detect these OCPs in aqueous matrices as required by EPA methods 525.2 and 625. Analysis of spiked real water samples revealed that the matrix had no effect on extraction for river, surface and tap waters; however, urban wastewater sample shown a little effect for five out of eighteen analytes.  相似文献   

13.
A simple and economic method for the analysis of phthalate esters, dimethyl phthalate, diethyl phthalate, di-iso-butyl phthalate, di-n-butyl phthalate, and di-2-ethylhexyl phthalate in cow milk samples by means of gas chromatography-flame ionization detection and gas chromatography-mass spectrometry has been developed. In this work, NaCl and ACN were added to 5 mL of the milk sample as the salting out agent and extraction solvent, respectively. After manual shaking, the mixture was centrifuged. In the presence of NaCl, a two-phase system was formed: upper phase - acetonitrile containing phthalate esters -and lower phase - aqueous phase containing soluble compounds and the precipitated proteins. After the extraction of phthalate esters from milk, a portion of supernatant phase (acetonitrile) was removed, mixed with 1,2-dibromoethane at microliter level and injected by syringe into NaCl solution. After the extraction of the selected phthalate esters into 1,2-dibromoethane, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. Under the optimum extraction conditions, low limits of detection and quantification between 1.5-3 and 2.5-11 ng/mL, respectively was observed. Enrichment factors were in the range of 397-499. The relative standard deviations for the extraction of 100 ng/mL of each phthalate ester were in the range of 3-4% (n = 6). Finally, some milk samples were successfully analyzed using the proposed method and two analytes, di-n-butyl phthalate and di-2-ethylhyxel phthalate, were determined in them in nanogram per milliliter level.  相似文献   

14.
A simple, low-cost and sensitive method is demonstrated for derivatization and extraction of iodine from milk samples using hollow fiber liquid-phase microextraction (HF-LPME) and gas chromatography-electron capture detection. Iodide ions are converted to iodine under acidic medium and in the presence of an oxidant. The generated iodine reacted with 3-pentanone in extraction vial to give 2-iodo-3-pentanone and was extracted into 4 μL of 1-octanol located in the lumen of a hollow fiber. Organic solvent was selected using one variable at a time optimization method and the other main factors affecting derivatization and HF-LPME procedures were evaluated using a Taguchi’s L16 (45) orthogonal array. Under optimal conditions, the method showed low limit of detection (0.5 ng mL?1), wide linear range (1–2,000 ng mL?1) with good correlation coefficient (0.9997) and acceptable relative standard deviation (4.6 %, n = 5). Finally, the developed method was successfully applied for determination of iodide in real samples including infant milk formulas and cow milk with reasonable relative recoveries (99.8–110.5 %).  相似文献   

15.
Microwave-assisted extraction (MAE) and dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) were evaluated for use in the extraction and preconcentration of volatile nitrosamines in meat products. Parameters affecting MAE, such as the extraction solvent used, and DLLME, including the nature and volume of the extracting and disperser solvents, extraction time, salt addition and centrifugation time, were optimized. In the MAE method, 0.25g of sample mass was extracted in 10mL NaOH (0.05M) in a closed-vessel system. For DLLME, 1.5mL of methanol (disperser solvent) containing 20μL of carbon tetrachloride (extraction solvent) was rapidly injected by syringe into 5mL of the sample extract solution (previously adjusted to pH 6), thereby forming a cloudy solution. Phase separation was performed by centrifugation, and a volume of 3μL of the sedimented phase was analyzed by GC-MS. The enrichment factors provided by DLLME varied from 220 to 342 for N-nitrosodiethylamine and N-nitrosopiperidine, respectively. The matrix effect was evaluated for different samples, and it was concluded that sample quantification can be carried out by aqueous calibration. Under the optimized conditions, detection limits ranged from 0.003 to 0.014ngmL(-1) for NPIP and NMEA, respectively (0.12-0.56ngg(-1) in the meat products).  相似文献   

16.
王东  侯传金  赵尔成  贾春虹 《色谱》2015,33(1):40-45
建立了分散液液微萃取(DLLME)与气相色谱-质谱法(GC-MS)联用快速检测蜂蜜中六六六(BHC)和滴滴涕(DDT)类农药残留的分析方法.使用三氯甲烷为萃取剂,通过涡旋、离心使分析物富集到微量三氯甲烷中,采用气相色谱-质谱进行分析.实验对影响DLLME萃取效率的因素,如萃取剂种类和体积、分散剂种类和体积、萃取时间等进行了考察,同时对方法的基质效应和性能进行了评估.结果显示:由于基质效应,8种六六六和滴滴涕类农药都出现信号增强现象.8种六六六和滴滴涕类农药在2~500 μg/L范围内线性关系良好,相关系数(r2)为0.991~0.998,方法富集倍数为74~96;当试样的加标水平为20、50和100 μg/kg时,8种六六六和滴滴涕类农药的回收率为61.0%~100.1%,相对标准偏差(RSD, n=5)为2.2%~19.5%.8种六六六和滴滴涕类农药的最低检测浓度均为20 μg/kg,最小检出量皆为1.0 ng.该方法简单、快速、高效,适用于蜂蜜中六六六和滴滴涕类农药的残留检测.  相似文献   

17.
A simple and efficient method, ionic liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-ultraviolet detection (HPLC-UV), has been applied for the extraction and determination of some antioxidants (Irganox 1010, Irganox 1076 and Irgafos 168) in water samples. The microextraction efficiency factors were investigated and optimized: 1-hexyl-3-methylimidazolium hexafluorophosphate [C(6)MIM][PF(6)] (0.06 g) as extracting solvent, methanol (0.5 mL) as disperser solvent without salt addition. Under the selected conditions, enrichment factors up to 48-fold, limits of detection (LODs) of 5.0-10.0 ng/mL and dynamic linear ranges of 25-1500 ng/mL were obtained. A reasonable repeatability (RSD≤11.8%, n=5) with satisfactory linearity (r(2)≥0.9954) of the results illustrated a good performance of the presented method. The accuracy of the method was tested by the relative recovery experiments on spiked samples, with results ranging from 85 to 118%. Finally, the method was successfully applied for determination of the analytes in several real water samples.  相似文献   

18.
In this study, a simple, rapid and efficient method, dispersive liquid-liquid microextraction (DLLME) combined gas chromatography-electron capture detection (GC-ECD), for the determination of chlorobenzenes (CBs) in water samples, has been described. This method involves the use of an appropriate mixture of extraction solvent (9.5 μl chlorobenzene) and disperser solvent (0.50 ml acetone) for the formation of cloudy solution in 5.00 ml aqueous sample containing analytes. After extraction, phase separation was performed by centrifugation and the enriched analytes in sedimented phase were determined by gas chromatography-electron capture detection (GC-ECD). Our simple conditions were conducted at room temperature with no stiring and no salt addition in order to minimize sample preparation steps. Parameters such as the kind and volume of extraction solvent, the kind and volume of disperser solvent, extraction time and salt effect, were studied and optimized. The method exhibited enrichment factors and recoveries ranging from 711 to 813 and 71.1 to 81.3%, respectively, within very short extraction time. The linearity of the method ranged from 0.05 to 100 μg l−1 for dichlorobenzene isomers (DCB), 0.002-20 μg l−1 for trichlorobenzene (TCB) and tetrachlorobenzene (TeCB) isomers and from 0.001 to 4 μg l−1 for pentachlorobenzene (PeCB) and hexachlorobenzene (HCB). The limit of detection was in the low μg l−1 level, ranging between 0.0005 and 0.05 μg l−1. The relative standard deviations (R.S.D.s) for the concentration of DCB isomers, 5.00 μg l−1, TCB and TeCB isomers, 0.500 μg l−1, PeCB and HCB 0.100 μg l−1 in water by using the internal standard were in the range of 0.52-2.8% (n = 5) and without the internal standard were in the range of 4.6-6.0% (n = 5). The relative recoveries of spiked CBs at different levels of chlorobenzene isomers in tap, well and river water samples were 109-121%, 105-113% and 87-120%, respectively. It is concluded that this method can be successfully applied for the determination of CBs in tap, river and well water samples.  相似文献   

19.
Xu X  Su R  Zhao X  Liu Z  Li D  Li X  Zhang H  Wang Z 《Talanta》2011,85(5):2632-2638
A simple method based on simultaneous microwave-assisted derivatization and ionic liquid-based dispersive liquid-liquid microextraction (IL-based DLLME) is proposed for the derivatization, extraction and preconcentration of formaldehyde in beverage samples prior to the determination by high-performance liquid chromatography (HPLC). Formaldehyde was in situ derivatized with 2,4-dinitrophenylhydrazine (DNPH) and simultaneously extracted and preconcentrated by using microwave-assisted derivatization and IL-based DLLME in a single step. Several experimental parameters, including type and volume of extraction solvent, type and volume of disperser, microwave power and irradiation time, volume of DNPH, pH of sample solution, and ionic strength were evaluated. When the microwave power was 120 W, formaldehyde could be derivatized and extracted simultaneously only within 90 s. Under optimal experimental conditions, good linearity was observed in the range of 0.5-50 ng/mL with the correlation coefficient of 0.9965, and the limit of detection was 0.12 ng/mL. The proposed method was applied to the analysis of different beverage samples, and the recoveries of formaldehyde obtained were in the range of 84.9-95.1% with the relative standard deviations lower than 8.4%. The results showed that the proposed method was a rapid, convenient and feasible method for the determination of formaldehyde in beverage samples.  相似文献   

20.
A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid–liquid microextraction (USADLLME) procedure has been developed to preconcentrate geosmin and 2-methylisoborneol (MIB) from water and wine samples prior to quantification by gas chromatography–mass spectrometry (GC–MS). A two-stage multivariate optimization approach was developed by means of a Plackett–Burman design for screening and selecting the significant variables involved in the USADLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: solvent volume, 8 μL; solvent type: tetrachloroethylene; sample volume, 12 mL; centrifugation speed, 2300 rpm; extraction temperature 20 °C; extraction time, 3 min; and centrifugation time, 3 min. Under the optimized experimental conditions the method gave good levels of repeatability with coefficient of variation under 11% (n = 10). Limits of detection were 2 and 9 ng L−1 for geosmin and MIB, respectively. Calculated calibration curves gave high levels of linearity with correlation coefficient values of 0.9988 and 0.9994 for geosmin and MIB, respectively. Finally, the proposed method was applied to the analysis of two water (reservoir and tap) samples and three wine (red, rose and white) samples. The samples were previously analyzed and confirmed free of target analytes. Recovery values ranged between 70 and 113% at two spiking levels (0.25 μg L−1 and 30 ng L−1) showing that the matrix had a negligible effect upon extraction. Only red wine showed a noticeable matrix effect (70–72% recovery). Similar conclusions have been obtained from an uncertainty budget evaluation study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号