首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kumar KS  Kang SH 《Electrophoresis》2007,28(22):4247-4254
This study examined the potential of microchip electrophoresis (ME) with a LIF detector using a programmed field strength gradient (PFSG) in a conventional glass double-T microchip for the ultra-fast detection and simultaneous analysis of genetically modified (GM) maize. The separation efficiency and sensitivity at various sieving gels (poly(ethylene oxide) (PEO, M(r) 8,000,000) and 2-hydroxyethylcellulose (HEC) (M(r) 250,000)) and fluorescent dye concentrations were investigated. The PCR products of both the GM and non-GM maize were analyzed within 30 s under the PFSG (470.6 V/cm for 20 s, 117.6 V/cm for 12 s, and 470.6 V/cm for 30 s) with a 2.5% HEC sieving matrix in the running buffer, 1 x Tris-borate EDTA (TBE) (pH 8.30) and 0.5 ppm ethidium bromide. The five transgenic maize varieties (Event176, MON810, Bt11, GA21, and T25) examined in this study were also clearly differentiated by ME-PFSG within 30 s in a single run without any loss of resolution. The ME-PFSG technique is a powerful tool for the ultra-fast detection and simultaneous analysis of GMOs in a variety of foods including maize.  相似文献   

2.
Kang SH  Park M  Cho K 《Electrophoresis》2005,26(16):3179-3184
We evaluated a novel strategy for fast diagnosis by microchip electrophoresis (ME), using programmed field strength gradients (PFSG) in a conventional glass double-T microfluidic chip. The ME-PFSG allows for the ultrafast separation and enhanced resolving power for target DNA fragments. These results are based on electric field strength gradients (FSG) that use an ME separation step in a sieving gel matrix poly-(ethylene oxide). The gradient can develop staircase or programmed shapes FSG over the time. The PFSG method could be easily used to increase separation efficiency and resolution in ME separation of specific size DNA fragments. Compared to ME that uses a conventional and constantly applied electric field (isoelectrostatic) method, the ME-PFSG achieved about 15-fold faster analysis time during the separation of 100 bp DNA ladder. The ME-PFSG was also applied to the fast analysis of the PCR products, 591 and 1191 bp DNA fragments from the 18S rRNA of Babesia gibsoni and Babesia caballi.  相似文献   

3.
We report the use of capillary gel electrophoresis (CGE) based on a rfbS allele-specific polymerase chain reaction (PCR) for the analysis and simultaneous detection of Salmonella pullorum and Salmonella gallinarum, which are the major bacterial pathogens in poultry. rfbS allele-specific PCR was used to concurrently amplify two specific 147- and 187-bp DNA fragments for the simultaneous detection of S. pullorum and S. gallinarum at an annealing temperature of 54 ± 1 °C and an MgCl2 concentration of 2.8-5.6 mM. Under an electric field of 333.3 V/cm and a sieving matrix of 1.0% poly(ethyleneoxide) (Mr 600 000), the amplified PCR products were analyzed within 6 min by CGE separation. This CGE assay could be translated to microchip format using programmed field strength gradients (PFSG). In the microchip gel electrophoresis with PFSG, both of the Salmonella analyses were completed within 30 s, without decreasing the resolution efficiency. rfbS allele-specific PCR-microchip gel electrophoresis with the PFSG technique might be a new tool for the simultaneous detection of both S. pullorum and S. gallinarum, due to its ultra-speed and high efficiency.  相似文献   

4.
We report a diagnostic method for Anaplasma phagocytophilum (A. phagocytophilum) infection in cattle using a nested PCR and microchip electrophoresis (ME). A. phagocytophilum causes human granulocytic anaplasmosis and granulocytic ehrlichiosis, which are emerging tick‐borne zoonotic diseases. Nested PCR was used to amplify genomic DNA samples extracted from cattle blood. The amplified PCR products were analyzed under a sieving gel matrix of 0.7% poly(ethyleneoxide) (Mr=8 000 000) in a conventional glass microchip. In the ME assay, A. phagocytophilum was analyzed within 35 s with a relative standard deviation of 1.30% (n=5) using a programmed field strength gradient (PFSG) as follows: 615.3 V/cm for 0–24 s, 66.7 V/cm for 24–34 s, 615.3 V/cm for 34–100 s. The ME‐PFSG assay was clinically validated by comparing the 16S rRNA gene levels obtained by this method with those measured using conventional slab gel electrophoresis performed with ten cattle blood samples suspected of A. phagocytophilum infection. In contrast to slab gel electrophoresis, the proposed ME‐PFSG methodology had increased sensitivity (200–450 pg/μL), a faster analysis time (<35 s), and required a smaller sample volume (~162 fL).  相似文献   

5.
无胶筛分毛细管电泳分析几百个碱基对核酸的条件优化   总被引:1,自引:0,他引:1  
丁晓萍  廖杰  刘晓达  王全立  马立人 《色谱》1998,16(6):485-488
通过正交设计实验综合分析了内充羟丙基甲基纤维素(HPMC)无胶筛分毛细管电泳中的分离场强、HPMC浓度、柱长度和柱内径对核酸分离的影响。结果表明,柱长度越长、柱内径越小、分离场强越小,分离效果越好。考虑实际情况,为能在短时间内使几百个碱基对的核酸得到有效分离,一般选择37cm×75μmi.d.的涂壁毛细管、柱内质量浓度为8g/L的HPMC、场强为324V/cm的条件,并在此种条件下分析了ApoB100基因的低浓度聚合酶链式反应(PCR)扩增产物(710bp)。  相似文献   

6.
We evaluated a novel strategy for high-sensitivity DNA fragment analysis in a conventional glass double-T microfluidic chip. The microchip allows for a DNA on-channel concentration based on base stacking (BS) with a microchip capillary gel electrophoretic (MCGE) separation step in a poly(vinylpyrrolidone) (PVP) sieving matrix. Depending if low conductivity caused a neutralization reaction between the hydroxide ions and the run buffer component Tris+, the stacking of DNA fragments were processed in the microchip. Compared to a conventional MCGE separation with a normal electrokinetic injection, the peak heights of 50-2650-base pair (bp) DNA fragments on the MCGE-BS separation were increased 3.9-8.0-fold. When we applied the MCGE-BS method to the analysis of a clinical sample of bovine theileria after PCR reaction, the peak height intensity of the amplified 816-bp DNA fragment from the 18S rRNA of T. buffeli was enhanced 7.0-fold compared to that of the normal injection method.  相似文献   

7.
A multi‐channel microchip electrophoresis using a programmed step electric field strength (PSEFS) method was investigated for fast parallel detection of feline panleukopenia virus (FPV) DNA. An expanded laser beam, a 10× objective lens, and a charge‐coupled device camera were used to simultaneously detect the separations in three parallel channels using laser‐induced fluorescence detection. The parallel separations of a 100‐bp DNA ladder were demonstrated on the system using a sieving gel matrix of 0.5% poly(ethylene oxide) (Mr = 8 000 000) in the individual channels. In addition, the PSEFS method was also applied for faster DNA separation without loss of resolving power. A DNA size marker, FPV DNA sample, and a negative control were simultaneously analyzed with single‐run and one‐step detection. The FPV DNA was clearly distinguished within 30 s, which was more than 100 times faster than with conventional slab gel electrophoresis. The proposed multi‐channel microchip electrophoresis with PSEFS was demonstrated to be a simple and powerful diagnostic method to analyze multiple disease‐related DNA fragments in parallel with high speed, throughput, and accuracy.  相似文献   

8.
9.
Large-scale genotyping of the repeat polymorphism in the regulatory region of the serotonin transporter gene (5-HTTLPR) was attempted by polymerase chain reaction (PCR) amplification followed by gel microchip electrophoresis analysis. The multilane (96) format of the gel microchip system allowed parallel separation of a large number of samples. The separation and visualization of the PCR amplicons from either the 5-HTTLPR short allele (number of repeats are 14) or the 5-HTTLPR long form (16 repeats) was completed in a few minutes. Genotyping of healthy Caucasian individuals showed that the short allele had a somewhat lower frequency (0.42) than the long form (0.58), and the genotype frequencies fulfilled the criteria of the Hardy-Weinberg equilibrium (chi = 0.012, p = 0.994). Based on these results, gel microchip electrophoresis system proved to be a powerful tool for high throughput genotyping of repeat polymorphism.  相似文献   

10.
We demonstrate here the power and flexibility of free‐solution conjugate electrophoresis (FSCE) as a method of separating DNA fragments by electrophoresis with no sieving polymer network. Previous work introduced the coupling of FSCE with ligase detection reaction (LDR) to detect point mutations, even at low abundance compared to the wild‐type DNA. Here, four large drag‐tags are used to achieve free‐solution electrophoretic separation of 19 LDR products ranging in size from 42 to 66 nt that correspond to mutations in the K‐ras oncogene. LDR‐FSCE enabled electrophoretic resolution of these 19 LDR‐FSCE products by CE in 13.5 min (E = 310 V/cm) and by microchip electrophoresis in 140 s (E = 350 V/cm). The power of FSCE is demonstrated in the unique characteristic of free‐solution separations where the separation resolution is constant no matter the electric field strength. By microchip electrophoresis, the electric field was increased to the maximum of the power supply (E = 700 V/cm), and the 19 LDR‐FSCE products were separated in less than 70 s with almost identical resolution to the separation at E = 350 V/cm. These results will aid the goal of screening K‐ras mutations on integrated “sample‐in/answer‐out” devices with amplification, LDR, and detection all on one platform.  相似文献   

11.
Liu D  Zhou X  Zhong R  Ye N  Chang G  Xiong W  Mei X  Lin B 《Talanta》2006,68(3):616-622
Microchip electrophoresis is a promising technique for analysis of bio-molecules. It has the advantages of fast analysis, high sensitivity, high resolution and low-cost of samples. Plastic chip has the potential of mass production for clinical use for its advantages in biocompatibility and low cost. In this work, the method for fabrication of poly(methyl methacrylate) (PMMA) chip was described, and conditions for DNA separation were investigated with the chip. The PMMA microchip was used for detection of multiplex PCR products of 18 and 36 cases with SARS and hepatitis B virus infection under optimized separation conditions. Microchip electrophoresis showed higher sensitivity, higher resolution and less time consumption when compared with gel electrophoresis. The microchip electrophoresis with PMMA chip provided a rapid, sensitive and reliable method for analysis of multiplex PCR products.  相似文献   

12.
Ginseng is one of the most expensive Chinese herbal medicines and the effectiveness of ginseng depends strongly on its botanical sources and the use of different parts of the plants. In this study, a microchip electrophoresis method coupled with the polymerase chain reaction (PCR)–short tandem repeats (STR) technique was developed for rapid authentication of ginseng species. A low viscosity hydroxypropyl methylcellulose (HPMC) solution was used as the sieving matrix for separation of the amplified STR fragments. The allele sizing of the amplified PCR products could be detected within 240 s or less. Good reproducibility and accuracy of the fragment size were obtained with the relative standard deviation for the allele sizes less than 1.0% (n=11). At two microsatellite loci (CT 12, CA 33), American ginseng had a different allele pattern on the electropherograms compared with that of the Oriental ginseng. Moreover, cultivated and wild American ginseng can be distinguished on the basis of allele sizing. This work establishes the feasibility of fast genetic authentication of ginseng species by use of microchip electrophoresis.  相似文献   

13.
PCR is an indispensable technique used in DNA analysis. However, with the traditional methods, the time spent on amplification and the subsequent analysis of PCR products is generally long. Therefore, it is essential to improve these two steps so that the whole procedure can be made faster. In the present work, with lambda-DNA as the control template, the amplification of 300-bp fragment could be completed within 37 s with capillary reaction chambers of LightCycler, and the following analysis of PCR products could be completed within 120 s with microchip electrophoresis as the detector. Since the high detection sensitivity of microchip electrophoresis, PCR products with template concentration as low as 5 fg/microL could be detected only after 435 s of amplification. In addition, based on additional optimized conditions simulated by CoventorWare, PCR microchips with distinct structure of the reaction chambers have been designed and successfully applied to the amplification of 300-bp fragment. By comparison, those chambers with ellipse and racket shapes were found to offer very high amplification efficiency. All of these results demonstrate the promise of integrating PCR and electrophoresis on microchip for developing easy-carrying instruments for the fast in situ detection of DNA.  相似文献   

14.
Various factors are critical in resolving DNA molecules at high speed, including the separation medium, concentration, composition, and pH of the buffer, as well as the electric field strength. To this study, considered the composition of a buffer and the difference in the pH, while paying attention to whether the separation ability changes in the microchip electrophoresis of DNA. DNA separation was particularly affected by both the buffer composition and the pH. Under the optimal microchip electrophoresis conditions that were determined in this study, an improved resolution of a wider range of DNA fragment sizes was achieved. Moreover, the total separation time decreased from 240 s to 100 s. Thus, by simplifying and improving the DNA electrophoresis in the microchip, this technique is now widely applicable to several different scientific fields.  相似文献   

15.
Applicability of modern microfabrication technology to electrophoresis microchips initiated a rapidly moving interdisciplinary field in analytical chemistry. Electric field mediated separations in microfabricated devices (electrophoresis microchips) are significantly faster than conventional gel electrophoresis, usually completed in seconds to minutes. Electrophoretic separation of DNA molecules on microfabricated devices proved to have the potential to improve the throughput of analysis by orders of magnitude. The flexibility of electrophoresis microchips allows the use of a plethora of separation matrices and conditions. In this paper, we report on electric field mediated separation of fluorescent intercalator-labeled dsDNA fragments in polyvinylpyrrolidone matrix-filled microchannel structures. The separations were detected in real time by a confocal, single-point laser-induced fluorescence/photomultiplier setup. Effects of the sieving matrix concentration (Ferguson plot), migration characteristics (reptation plot), separation temperature (Arrhenius plot), as well as applied electric field strength and intercalator concentration on the separation of DNA fragments are thoroughly discussed.  相似文献   

16.
An ultra-fast analysis of proteins, based on sodium dodecyl sulfate (SDS)-mediated gel electrophoresis was developed, in which protein molecular mass standards ranging from Mr 14 200 to 94 700 were separated within 3 min. A 50 μm diameter uncoated fused-silica capillary column and a high field strength are used. The effects of the SDS concentration in the separation gel buffer and in the sample buffer on the resolution of protein test mixture were studied. The influence of the heat treatment of the sample prior analysis is also discussed.  相似文献   

17.
Thrombin generation in blood serves as an important marker for various hemostasis-related diseases and conditions. Analytical techniques currently utilized for determining the thrombin potential of patients rely primarily on the enzymatic activity of thrombin. Microfluidic-based ACE using fluorescently labeled aptamers as affinity probes could provide a simple and efficient technique for the real-time analysis of thrombin levels in plasma. In this study, aptamers were used for the analysis of thrombin by affinity microchip CGE. The CGE used a poly(methyl methacrylate) (PMMA) microfluidic device for the sorting of the affinity complexes with a linear polyacrylamide (LPA) serving as the sieving matrix. Due to the fact that the assay was run under nonequilibrium electrophoresis conditions, the presence of the sieving gel was found to stabilize the affinity complex, providing improved electrophoretic performance compared to free-solution electrophoresis. Two fluorescently labeled aptamer affinity probes, HD1 and HD22, which bind to exosites I and II, respectively, of thrombin were investigated. With an electric field strength of 300 V/cm, two well-resolved peaks corresponding to free aptamer and the thrombin-aptamer complex were obtained in less than 1 min of separation time with a run-to-run and chip-to-chip reproducibility (RSD) of migration times <10% using both aptamers. HD22 affinity assays of thrombin produced baseline-resolved peaks with favorable efficiency due to its higher binding affinity, whereas HD1 assays showed poorer resolution of the free aptamer and complex peaks. HD22 was used in determining the level of thrombin in human plasma. Assays were performed directly on plasma that was diluted to 10% v/v. Thrombin was successfully analyzed by microchip CGE at a concentration level of 543.5 nM for the human plasma sample.  相似文献   

18.
A form of single‐strand DNA‐conformation polymorphism analysis (SSCP) employing nondenaturing slab gel electrophoresis is applicable to the genetic diagnosis of mutations at exons 7, 8 and 9 of the p53 gene. Recently, microchip electrophoresis (ME) systems have been used in SSCP analysis instead of conventional slab gel electrophoresis in terms of speed, sensitivity and automation. The aim of the present study was to investigate the application of SSCP and ME analysis as a rapid and effective method to the detection of mutations for exons 7, 8 and 9 of the p53 gene. It was found that using the electric field strength 260 V/cm and the sieving matrix of 4 mg/mL poly(ethylene oxide) was very useful to achieve better resolution and fast detection of mutations at exons 7, 8 and 9 of p53 gene. Under the optimized conditions, mutations at exons 7–9 of p53 gene were analyzed within 60 s and the relative standard deviation values of the migration times were less than 5.81% (n=5). The detection limit can be as low as 1 ng·L?1.  相似文献   

19.
We demonstrate a new and sensitive amplification technique (referred to as Nested Polymerase Chain Reaction; nPCR). It based on a magnetically actuated circular closed-loop PCR microchip system. nPCR involves the use of two sets of primers in two successive PCR runs, and allows the amplification of a single locus from a minute quantity of template DNA. Two sets of primers are specially designed to a target 500-bp region of the bacteriophage lambda template DNA in the first PCR run, and a 247-bp region of the targeted 500-bp first PCR product in the second PCR run. PCR is run on the microchip system and concurrently in regular thermocycler for comparison. The products are analyzed by conventional agarose gel electrophoresis. The detection limit for the initial template DNA is 1.63?×?105 copies per μL (or 8.67?pg) for the first PCR run, and 1.63 copies per μL (or 0.0867?fg) for the second run. The results are comparable to a regular thermocycler. This preliminary study opens a new gateway to future development of specialized nPCR on chip.
Figure
Nested polymerase chain reaction (nPCR) was first demonstrated on the magnetically actuated circular closed-loop PCR microchip system, using DNA amplification on bacteriophage lambda template DNA as a chemical model.  相似文献   

20.
We present a novel isotachophoresis–gel electrophoresis (ITP–GE) microchip system designed for rapid and efficient isotachophoretic preconcentration coupled with gel electrophoresis separation by using a negative pressure sampling technique. The overall ITP–GE procedure involves only three steps: sample loading, ITP preconcentration and GE separation and was controlled by a simple and compact negative pressure sampling device, which is composed of a vacuum vessel, a three-way electromagnetic valve and a single high voltage power supply. During the sample loading stage, a negative pressure was applied via a three-way electromagnetic valve in headspace of the two sealed sample waste reservoirs (SWs). A sandwiched sample zone between a leading and a terminating electrolyte zone was formed in the channel intersection in less than 1 s. Once the three-way electromagnetic valve was switched to connect SWs to ambient atmosphere to release vacuum in SWs, ITP preconcentration in free solution and GE separation in the 4% hydroxyethylcellulose (HEC) sieving material were consequently activated under the electric potentials applied. The performance of present approach was evaluated by using DNA fragments as model analytes. Compared to conventional cross microchip GE using electrokinetic pinched injection, an average signal enhancement of 185-fold was obtained with satisfactory resolution. The results demonstrated the ITP–GE approach possessing an exciting potential of high sensitivity and short sampling time with significant simplification in operation and instrumentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号