首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Experimental FTIR, FT-Raman and FT-NMR spectroscopic studies of o-fluoronitrobenzene and p-fluoronitrobenzene have been carried out. A detailed quantum chemical calculations have been performed using DFT/B3LYP method with 6-311++G** and 6-31G** basis sets. Complete vibrational analyses of the compounds were performed. The temperature dependence of thermodynamic properties has been analysed. The atomic charges, electronic exchange interaction and charge delocalisation of the molecule have been performed by natural bond orbital (NBO) analysis. Molecular electrostatic surface potential (MESP), total electron density distribution and frontier molecular orbitals (FMOs) are constructed at B3LYP/6-311++G** level to understand the electronic properties. The charge density distribution and site of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). The electronic properties, HOMO and LUMO energies were measured by time-dependent TD-DFT approach. (1)H and (13)C NMR spectra were recorded and (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were calculated. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecules in chloroform solvent and in gas phase were calculated by using the Gauge-Independent Atomic Orbital (GIAO) method and are found to be in good agreement with experimental values. The theoretical parameters obtained at B3LYP levels have been compared with the experimental values.  相似文献   

2.
The structural and electronic properties of berberine and berberrubine have been studied extensively using density functional theory (DFT) employing B3LYP exchange correlation. The geometries of these molecules have been fully optimized at the B3LYP/6-311G** level. The chemical shift of 1H and 13C resonances in NMR spectra of these molecules have been calculated using the gauge invariant atomic model (GIAO) method as implemented in Gaussian 98. One- and two-dimensional HSQC (1H-13C), HMBC (1H-13C) and ROESY (1H-1H) spectra were recorded at 500 MHz for the berberine molecule in D(2)O solution. All proton and carbon resonances were unambiguously assigned, and inter-proton distances obtained from ten observed NOE contacts. A restrained molecular dynamics (RMD) approach was used to get the optimized solution structure of berberine. The structure of berberine and berberrubine molecules was also obtained using the ROESY data available in literature. Comparison of the calculated NMR chemical shifts with the experimental values revealed that DFT methods produce very good results for both proton and carbon chemical shifts. The importance of the basis sets to the calculated NMR parameters is discussed. It has been found that calculated structure and chemical shifts in the gas phase predicted with B3LYP/6-311G** are in very good agreement with the present experimental data and the measured values reported earlier.  相似文献   

3.
A series of model tertiary amines were oxidized in situ in an NMR tube to amine N-oxides and their (1)H and (13)C NMR spectra were recorded. Next, the chemical shifts induced by oxidation (Δδ) were calculated using different GIAO methods investigating the influence of the method [Hartree-Fock (HF), Moeller-Plesset perturbation, density functional theory (DFT)], the functional applied in the DFT (B3LYP, BPW, OPBE, OPW91) and the basis set used [6-31G*, 6-311G**, 6-311 + + G** and 6-311 + + G(3df,3pd)]. The best results were obtained with the HF/6-311 + + G** and OPBE/6-311 + + G** methods. The computation/experiment comparison approach was used for the configuration prediction of chiral amine N-oxides-(R) and (S)-agroclavine-6-N-oxide.  相似文献   

4.
Tetrachlorinated diphenyl sulfides (TCDPSs) are environmentally interesting compounds. In this paper, both experimental and theoretical studies on IR and (1)H NMR as well as (13)C NMR chemical shifts of 4 synthesized TCDPSs have been carried out. The optimized geometries were obtained at the B3LYP/6-311G** level by using the Gaussian 03 program. Meanwhile, related spectral parameters were calculated. In addition, the experimental values were compared with the calculated ones. The results show that the scaled theoretical vibration frequencies are in good accordance with the observations, and computed chemical shifts are consistent with the experimental values.  相似文献   

5.
The 1H, 13C and 15N absolute shieldings of 13 amines were calculated at the GIAO/B3LYP/6-311++G** level. For some compounds (ethylamine, piperidine and 1-methylpiperidine) two conformations were calculated. The 13C and 15N data could be correctly correlated with experimental chemical shifts, allowing the conformation of 1-methylpiperidine to be established. The 1H NMR absolute shieldings, although less well correlated with delta values, were used to account for the anisotropy effects of the N lone pair.  相似文献   

6.
In this work, two important opioid antagonists, naltrexone and oxycodone, were prepared from thebaine and were characterized by IR, (1)H NMR and (13)C NMR spectroscopy. Moreover, computational NMR and IR parameters were obtained using density functional theory (DFT) at B3LYP/6-311++G** level of theory. Complete NMR and vibrational assignment were carried out using the observed and calculated spectra. The IR frequencies and NMR chemical shifts, determined experimentally, were compared with those obtained theoretically from DFT calculations, showed good agreements. The RMS errors observed between experimental and calculated data for the IR absorptions are 85 and 105 cm(-1), for the (1)H NMR peaks are 0.87 and 0.17 ppm and for those of (13)C NMR are 5.6 and 5.3 ppm, respectively for naltrexone and oxycodone.  相似文献   

7.
The direct molecular structure implementations of the gage-including atomic orbital (GIAO), individual gages for atoms in molecules (IGAIM) and continuous set of gage transformations (CSGT) methods for calculating nuclear magnetic shielding tensors at both the Hartree-Fock (HF) and density functional (B3LYP) levels of theory with 6-31G(d), 6-311G(d), 6-31++G(d,p), 6-311++G(d,p), and 6-311++G(df,pd) basis sets are presented. Dependence on the 1H and 13C NMR chemical shifts on the choice of method and basis set have been investigated. Also, these chemical shifts of 2-aryl-1,3,4-oxadiazoles 5a–g have been performed related to dihedral angles (C4–C3–C2–O) of two conformers. The optimized molecular geometries and 1H and 13C chemical shift values of 2-aryl-1,3,4-oxadiazoles 5a–g in the ground state have been obtained. The linear correlation coefficients of 13C NMR chemical shifts for these molecules were given. The new nuclear magnetic shielding tensors of tetramethylsilane (TMS) were calculated. The data of 2-aryl-1,3,4-oxadiazole derivatives display significant molecular structure and NMR analysis. Also, these provide the basis for future design of efficient materials having the 1,3,4-oxadiazole core.  相似文献   

8.
1H, 13C and 15N NMR measurements (1D and 2D including 1H--15N gs-HMBC) have been carried out on 3-amino-1, 2,4-benzotriazine and a series of N-oxides and complete assignments established. N-Oxidation at any position resulted in large upfield shifts of the corresponding N-1 and N-2 resonances and downfield shifts for N-4 with the exception of the 3-amino-1,2,4-benzotriazine 1-oxide in which a small upfield shift of N-4 was observed. Density functional GIAO calculations of the 15N and 13C chemical shifts [B3LYP/6-31G(d)//B3LYP/6-311+G(2d,p)] gave good agreement with experimental values confirming the assignments. The combination of 13C and 15N NMR provides an unambiguous method for assigning the 1H and 13C resonances of N-oxides of 1,2,4-benzotriazines.  相似文献   

9.
本文分别采用量子化学从头算Hatree-Fock方法和密度泛函B3LYP方法在6-311G++基组水平下对几种苄基哌嚷衍生物的13C NMR作了计算研究.结果表明两种方法计算得到的各苄基哌嗪衍生物中C原子化学位移的计算值与实验值之间均近似存在线性关系,其中采用考虑了电子相关作用的密度泛函方法计算时,各化合物中碳原子的化...  相似文献   

10.
The 1H and 13C NMR chemical shifts of cis- and trans-protopinium salts were measured and calculated. The calculations of the chemical shifts consisted of conformational analysis, geometry optimization (RHF/6-31G** method) and shielding constants calculations (B3LYP/6-31G** method). Based on the results of the quantum chemical calculations, two sets of experimental chemical shifts were assigned to the particular isomers. According to the experimental results, the trans-isomer is more stable and its population is approximately 68%.  相似文献   

11.
(1)H, (13)C, DEPT, COSY, NOESY and HETCOR NMR spectra of 4-(3-cyclohexen-1-yl)pyridine (4-Chpy) have been reported for the first time. (1)H and (13)C NMR chemical shifts of 4-Chpy (C(11)H(13)N) have been calculated by means of the Hartree-Fock (HF) and Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-311++G(d,p) basis set. Comparison between the experimental and the theoretical results indicate that density functional B3LYP method is superior to the scaled HF approach for predicting NMR properties.  相似文献   

12.
The molecular structure of 1-thia-closo-decaborane(9), 1-SB(9)H(9), has been determined by the concerted use of gas electron diffraction and quantum-chemical calculations. Assuming C(4v) symmetry, the cage structure was distorted from a symmetrically bicapped square antiprism (D(4d) symmetry) mainly through substantial expansion of the tetragonal belt of boron atoms adjacent to sulfur. The S-B and (B-B)(mean) distances are well determined with r(h1) = 193.86(14) and 182.14(8) pm, respectively. Geometrical parameters calculated using the MP2(full)/6-311++G** method and at levels reported earlier [MP2(full)/6-311G**, B3LYP/6-311G** and B3LYP/cc-pVQZ], as well as calculated vibrational amplitudes and (11)B NMR chemical shifts, are in good agreement with the experimental findings. In particular, the so-called antipodal chemical shift of apical B(10) (71.8 ppm) is reproduced well by the GIAO-MP2 calculations and its large magnitude is schematically accounted for, as is the analogous antipodal chemical shift of B(12) in the twelve-vertex closo-1-SB(11)H(11).  相似文献   

13.
应用规范不变原子轨道法(GIAO)在RHF/6-31G**和B3LYP/6-31G**水平上计算了质子化双氮桥联1,10-菲咯啉大环化合物(H4HAPP2+)C2h和C2h构型的1HNMR,并用TDDFT法计算了H4HAPP2+电子光谱.结果表明,B3LYP/6-31G*优化的C2h构型为较优构型,经谐振频率验证无虚频,C2h构型是H4HAPP2+合理的对称性构型.  相似文献   

14.
DFT/B3LYP calculations of the ground-state conformation of eight cyclic and acyclic acetals are presented and compared with experimental data. Results of single-point GIAO/DFT calculations at five different levels of theory show that isotropic shieldings need to be empirically scaled to achieve agreement with experimental chemical shifts. Statistical evaluation of data indicates that the most accurate prediction of 13C chemical shifts is achieved at the MPW1PW91/6-311G** level of theory. An empirical equation describing the relationship between delta values and shielding constants is postulated. This equation has been applied to the non-chair ground-state conformation of the six-membered acetonide and to the conformationally flexible benzodioxonine derivative. The agreement observed between the experimental and predicted chemical shifts shows that calculations at the MPW1PW91/6-311G** level of theory are adequate for addressing questions of conformation.  相似文献   

15.
In this work, the experimental and theoretical vibrational spectra of pyrazole (PZ) and 3,5-dimethyl pyrazole (DMP) have been studied. FTIR and FT-Raman spectra of the title compounds in the solid phase are recorded in the region 4000-400 cm(-1) and 4000-50 cm(-1), respectively. The structural and spectroscopic data of the molecules in the ground state are calculated using density functional methods (B3LYP) with 6-311+G** basis set. The vibrational frequencies are calculated and scaled values are compared with experimental FTIR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete vibrational assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SM) method. 13C and 1H NMR chemical shifts results are compared with the experimental values.  相似文献   

16.
The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of 2-aminonicotinic acid (2-ANA) was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR (1H and 13C) spectra of 2-aminonicotinic acid and its alkali metal salts were recorded. Characteristic shifts and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons (1H NMR) and carbons (13C NMR) in the series of studied alkali metal 2-aminonicotinates (2-AN) were observed too.Optimized geometrical structures of the studied compounds were calculated by the B3LYP method using the 6-311++G** basis set. Aromaticity indices, atomic charges, dipole moments and energies were also calculated. The theoretical chemical shifts in 1H and 13C NMR spectra and theoretical wavenumbers and intensities of IR and Raman spectra were determined. The calculated parameters were compared to the experimental characteristics of the studied compounds.  相似文献   

17.
Pyridine-2-phosphono-4-carboxylic acid (MC1) is a compound that possesses potential neuroactivity. In this work the 1H, 13C and 31P NMR spectra of MC1 dissolved in D2O in solution, in the 1.5-9.0 pD range, are presented. Theoretical calculations of the NMR spectra, as well as structural parameters of expected compounds, were performed at the B3PW91/6-311G** and B3PW91/6-31G** level, respectively, for all five possible forms of MC1 (cation, zwitteranion and three anions). Consecutive deprotonation of MC1 and its influence on the structure of the ligand are discussed in detail.  相似文献   

18.
Sterucally congested 2,2-disubstituted indane-1,3-dione derivatives have been syn- thesized and characterized by <'1>H NMR, <'13>C NMR, FT-IR and elemental analysis.The B3LYP/HF calculations for computation of IR spectra have been carried out for the title compounds at the 6- 31G* and 6-311-m-G** basis set levels.Predicted vibrational frequencies have been assigned and compared with the experimental FT-IR spectra and they are supported each other.  相似文献   

19.
The molecular geometry, vibrational frequencies, 1H and 13C NMR chemical shifts, UV-vis spectra, HOMO-LUMO analyses, molecular electrostatic potentials (MEPs), , thermodynamic properties and atomic charges of 3- and 4-Nitrobenzaldehyde oxime (C7H6N2O3) molecules have been investigated by using Hartree-Fock (HF) and density functional theory (DFT/B3LYP) methods with the 6-311++G(d, p) basis set. The calculated optimized geometric parameters (bond lengths and bond angles), the vibrational frequencies calculated and 13C and 1H NMR chemical shifts values for the mentioned compounds are in a very good agreement with the experimental data. Furthermore, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) have been simulated and the transition states, energy band gaps and molecular electrostatic potential (MEP) maps for each oxime compound have been determined. Additionally, we also report the infrared intensities and Raman activities for the compounds under study.  相似文献   

20.
The temperature dependence of the 1 H NMR resonance of the C‐4 olefinic proton in vinylcyclopropane was investigated through a combination of ab initio calculations and Boltzmann statistics. A torsional energy profile as a function of the 〈?〉 dihedral angle was obtained using HF methodology with a 6–311G** basis set, while the corresponding 1 H chemical shift profiles for the C‐4 proton were computed using the GIAO approach and either HF, DFT (B3LYP) or MP2 methods at the 6–311G** level of theory. Chemical shifts at different temperatures calculated as canonical ensemble averages in which the different ab initio 1 H chemical shift profiles and a Boltzmann factor defined by the HF/ 6–311G** energy function are employed reproduce remarkably well the temperature dependence observed experimentally. Attempts to perform a similar study using only the GIAO‐MP2 1 H chemical shift profile and 〈?〉 dihedral angle trajectories obtained from molecular dynamics simulations at different temperatures failed to reproduce the experimental trends. This shortcoming was attributed to the inability of the force fields employed, Tripos 6.0 and MMFF94, to reproduce properly the three‐well torsional potential of vinylcyclopropane. The application of both methodologies to the calculation of population‐dependent chemical shifts in other systems is discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号