首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
壳聚糖及其衍生物对金属离子的吸附研究(下)   总被引:8,自引:0,他引:8  
壳聚糖是一种天然高分子,在其分子结构的重复单元中有-NH2和-OH,因而对金属离子有较好地吸附和配位能力。本文较全面的综述了壳聚糖及其衍生物对金属离子的吸附性能,简述了它们与金属离子形成配合物的结构及吸附机理。其中下篇主要讲述了壳聚糖及其衍生物与金属离子形成配合物后的结构以及吸附机理,并对其发展前景作了展望。  相似文献   

2.
胡惠媛  朱虹 《化学进展》2012,24(11):2212
壳聚糖的结构中含有大量的—NH2和—OH,因此其对重金属离子有优良的吸附作用。但是作为天然高分子物质,壳聚糖的吸附性能又受到其自身物理形态、原料来源、脱乙酰度及体系pH值的影响,因此,对其进行物理和化学改性是提高壳聚糖吸附性能、扩大应用范围的必要手段。本文综述了壳聚糖的改性方法及其衍生物对重金属离子吸附作用的研究进展,并对其在重金属污染废水处理方面的前景作了展望。  相似文献   

3.
基于壳聚糖及其衍生物的金属离子吸附剂的研究进展   总被引:27,自引:0,他引:27  
综述了近年来以壳聚糖和壳聚糖衍生物为原料的金属离子吸附剂的研究进展.重点介绍了壳聚糖及其衍生物的交联和功能化反应,以及交联后的树脂对多种金属离子的吸附情况.常用的交联剂包括戊二醛、甲醛及环氧氟丙烷,(聚)乙二醇双缩水甘油醚等,壳聚糖树脂的功能化主要包括向其中引入冠醚、羧甲基等功能团,其中羧甲基化是最常用最有效的方法.另外,还介绍了金属离子模板壳聚糖树脂以及基于壳聚糖衍生物的蛇笼树脂的合成。  相似文献   

4.
谢剑伟  杨发福  陈文  洪碧琼 《合成化学》2011,19(1):49-51,94
交替利用微波、超声技术使杯[4]芳烃-1,3-二醛衍生物与预处理的壳聚糖发生缩合反应,合成了新的席夫碱基杯[4]芳烃-壳聚糖衍生物(4),其结构经IR和SEM表征.离子吸附实验表明,4对金属离子具有良好的吸附能力.  相似文献   

5.
N-烷基壳聚糖衍生物的合成及其对阳离子的吸附性能   总被引:5,自引:0,他引:5  
烷基衍生物;阳离子吸附性能;N-烷基壳聚糖衍生物的合成及其对阳离子的吸附性能  相似文献   

6.
Cu~(2 )壳聚糖螯合物及壳聚糖吸附Cu~(2 )机理的XPS研究   总被引:6,自引:0,他引:6  
壳聚糖能选择性地吸附Mg2 、Ni2 、Al3 、Ag 、Pb2 等金属离子[1],在环境保护、水处理、贵金属精制和回收等领域有广泛的应用前景[2 ].目前对壳聚糖吸附金属离子尤其是对Cu2 吸附的研究十分活跃 ,对壳聚糖吸附了Cu2 后形成的螯合物的研究也有报道[3,4 ].Inaki等[5]认为壳聚糖吸附Cu2 的机理是通过其表面—NH2 及其邻近的—OH与Cu2 进行络合反应从而吸附了Cu2 .本文用X射线光电子能谱 (XPS)研究了壳聚糖及吸附Cu2 后形成的Cu2 壳聚糖螯合物表面的元素组成及其结合能的变化 ,根据结合能的变…  相似文献   

7.
交联壳聚糖的结构及其对不同金属离子的吸附性能   总被引:13,自引:0,他引:13  
交联壳聚糖的结构及其对不同金属离子的吸附性能;交联壳聚糖;Cu2+;Co2+;Ni2+;结构;吸附性能  相似文献   

8.
本文综述了近年来含硫壳聚糖衍生物的制备及应用研究进展,主要介绍了巯基化壳聚糖、硫脲衍生物修饰壳聚糖在金属离子吸附分离中的应用及磺化壳聚糖在生物医药方面的应用。  相似文献   

9.
尿素能够显著破坏甲壳素/壳聚糖分子氢键结构和疏水相互作用,增加其临界胶束浓度,促进多糖大分子的溶解,并能减少其在溶液中的自聚集现象.碱-尿素水溶液可以作为一种新型的甲壳素/壳聚糖绿色溶剂,有望用于对刺激性要求较为苛刻的食品、生物医学等领域.壳聚糖衍生物特别是其与过渡金属离子的配合物具有良好的尿素吸附功能,可用于尿毒症患者血液中小分子毒物的吸附,对机体刺激性小且不吸附血清蛋白等生物大分子.有望成为血液灌流治疗法中清除尿素等小分子毒性物质的良好吸附剂.壳聚糖还可以作为包膜材料,制备壳聚糖包膜尿素,与普通的包膜尿素相比性能更为优越.  相似文献   

10.
氮杂冠醚接枝壳聚糖的合成及其对金属离子的吸附性能   总被引:4,自引:0,他引:4  
本文利用壳聚糖C2位上活泼的氨基先与苯醛反应制备成保护氨基的Schiff碱壳聚糖,再将含环氧基的氮杂冠醚接枝到壳聚糖的C6位上,制得含Schiff碱的氮杂冠醚壳聚糖,随后使其在一定条件下脱去苯甲醛,合成了一种含氮杂冠醚功能基的新型壳聚糖衍生物,研究了其重金属离子Pb^2+,Cu^2+、Cr^3+、Cd^2+的静态吸附性能。结果表明,该吸附剂对重金属离子具有较强的吸附能力,在Ph^2+、Cu^2+、  相似文献   

11.
Here we review chitosan-based materials for solid-phase extraction of metal and metalloid ions prior to their determination by atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry, mass spectrometry, and some other spectrometric techniques. We show that nearly zero affinity of chitosan and its derivatives to alkali and alkali-earth metal ions is very beneficial for separation of analytes from the salt matrix, which is always present in natural waters, waste streams, and geological samples and interferes with analytical signals. Applicability of chitosan to selective recovery of different metal and metalloid ions can be significantly improved via functionalization with N-, S-, and O-containing groups imparting chitosan with additional electron donor atoms and capability to form stable five- and six-membered chelate rings with metal ions. Among most promising materials for analytical preconcentration, we discussed chitosan-based composites; carboxyalkyl chitosans; chitosan derivatives containing residues of aminoacids, iminodiacetic acid, ethylenediaminetetraacetic and diethylenetriaminepentaacetic acids; chitosans modified with aliphatic and aromatic amines, heterocyclic fragments (pyridyl, imidazole), and crown ethers. We have shown that most chitosan derivatives provide only group selectivity toward metal ions; however, optimization of recovery conditions allows metals and metalloids speciation and efficient separation of noble and transition metal ions.  相似文献   

12.
Chitosan is derived from chitin by deacetylation. Chitosan forms a complex with metal ions and is soluble an organic acid. The metal ions were concentrated in the precipitates of chitosan when the sample solution containing metal ions was adjusted to neutral after the chitosan solution was added. These properties are applied to the preconcentration of metal ions in water samples and their determination by graphite furnace atomic absorption spectrometry. Metal ions,such as ruthenium, indium, vanadium, strontium,rhodium were collected in the chitosan precipitates.  相似文献   

13.
Summary: Naturally abundant biosorbants such as chitin and chitosan are recognized as excellent metal ligands, forming stable complexes with many metal ions, and serving as effective protein coagulating agents. Chitosan is a heteropolymer made of D-glucosamine and a small fraction of N-acetyl-D-glucosamine residues. Therefore, the adsorption ability of chitosan is found to be much higher than that of chitin, which has relatively fewer amino groups. Zeolites are crystalline microporous aluminosilicates with ion exchange properties suitable for a wide range of applications in catalysis and separation of liquid and gaseous mixtures. Incorporation in chitosan membranes is an effective method to control the diffusion outside the zeolite crystals and appropriately designed composite systems can find numerous opportunities for applications in wastewater treatment. In this paper we present the synthesis of zeolite-chitosan and zeolite-ethyl cellulose composites by encapsulation of clinoptilolite using a gelling solution of chitosan or an ethyl cellulose solution in ethyl acetate. The adsorption process of Cu2+ and Cd2+ on some adsorbents was investigated: clinoptillolite tuff (0.05 mm), chitosan flakes, ethyl cellulose, zeolite-chitosan and zeolite- ethyl cellulose composites. Zeolite-chitosan composites have been prepared by encapsulation of zeolites by a gelling solution of chitosan. Micrometric crystals of clinoptillolite were dispersed in a 3% chitosan solution in 1% aqueous acetic acid. The chitosan gel was formed and the zeolite crystals were encapsulated during the gelling process. The same procedure was used to obtain zeolite – ethyl cellulose composites. Study of the metal ion retention properties of different adsorbent materials was carried out using a steady state regime. The concentration of heavy metal ions in supernatant was determined by the atomic absorption spectrophotometric method. Adsorption isotherms of metal ions on adsorbents were determined and correlated with common isotherm equations such as Langmuir and Freundlich models.  相似文献   

14.
In recent years, heavy metal uptake by biopolymer gels, such as Cal-alginate or chitosan, has been studied by various methods. This is of interest because such materials might be an alternative to synthetical ion-exchange resins in the treatment of industrial waste waters. Most of the work done in this field consisted of studies of equilibirum absorption of different heavy metal ions with dependence on various experimental parameters. In some publications, the kinetics of absorption were studied, too. However, no experiments on the spatial distribution of heavy metals during the absorption process are known to us. Using Cu as an example, it is demonstrated in this article that NMR microscopy is an appropriate tool for such studies. By the method presented here, it is possible to monitor the spatial distribution of heavy metal ions with a time resolution of about 5 min and a spatial resolution of 100 μm or even better.  相似文献   

15.
Thiosemicarbazide, phosphoric acid and amidoxime derivatives of chitosan were synthesized and their ability for metal ion adsorptions was discussed. Thiosemicarbazide derivative, synthesized by treating chlorodeoxychitosan with ammonium thiocyanate followed by treatment with hydrazine, was considered to have cross-linked network structure. Phosphoric acid derivative containing both N-phosphonic acid and phosphoric acid groups was synthesized by cyanoethylation of chitosan using acrylonitrile, followed by treatment with hydroxylamine. These derivatives were found to adsorb effectively infinitesimal concentration (ppb order) of uranyl ion in seawater. Stability constants of some metal ion chitosan chelates were determined. To improve the selectivity in the adsorption of metal ions, a novel method utilizing metal ion as a template was adopted, and the results are discussed.  相似文献   

16.
Gao Y  Oshita K  Lee KH  Oshima M  Motomizu S 《The Analyst》2002,127(12):1713-1719
Chelating resins, two kinds of iminodiacetate derivatives (IDA) of cross-linked chitosan (CCS) were synthesized and investigated for adsorption capacity, matrix elimination and collection/concentration of analytes by a column pretreatment in a multi-element ICP-MS determination method. The adsorption behavior of 54 elements at the 10 ng ml(-1) level on chitosan derivatives in a packed mini-column was systematically examined. Almost 30 kinds of metal ions were recovered quantitatively at pH 5 with CCS-HP/IDA (cross-linked chitosan possessing N-2-hydroxypropyl iminodiacetic acid groups) column. Compared with available chitosan-iminodiacetate resin, CHITOPEARL CI-03, the recovery of the metal ions such as Cu, Pb and La is satisfactory with CCS-IDA (cross-linked chitosan possessing N,N-iminodiacetic acid groups) and CCS-HP/IDA using 2 M nitric acid as an eluent, which may be attributed to the difference of cross-linking and macroporous structure. Compared with Chelex-100, the adsorption efficiency is in the order: Chelex-100 > CCS-IDA > CCS-HP/IDA, especially in the chelating ability for alkaline earth metals. The resin with a longer spacer (CCS-HP/IDA) showed higher adsorption selectivity between heavy metal ions and alkaline earth metals at pH < 7. The separation efficiency of the major matrix cations in seawater (Na. K, Mg, Ca) has also been investigated, and matrix interference was negligible even in a seawater sample at pH 5 with CCS-HP/IDA. The recoveries of Mn at pH 5 with CCS-HP/IDA or Chelex-100 were almost 100%. However, those of Mg with each resin were 4 or 98%, respectively. The adsorption capacities of synthesized CCS-HP/IDA for Cu(II), Pb(II) and La(III) were 0.90, 0.65 and 0.34 mmol g(-1), respectively. Therefore, the chelating chitosan resins developed are applicable to the pretreatment of trace amounts of elements in various kinds of water samples.  相似文献   

17.
综述了近年来壳聚糖及其衍生物在处理工业废水中的应用.壳聚糖及其衍生物可处理工业废水中的重金属离子,如Cr(Ⅵ)、Cu(Ⅱ)和Zn(Ⅱ)等;可处理含染料的工业废水,如处理直接紫B、直接绿BE以及甲基橙等染料;还可用于处理印染、造纸和含油废水.壳聚糖及其衍生物具有易分离、可生物降解,无污染等特点,是绿色的水处理剂,且我国壳聚糖资源极为丰富,探索其在工业废水处理中的应用有着重要的价值.  相似文献   

18.
Summary: The complexation agents 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formyl-phenol (BPMAMFF) and 2-[2-(hydroxybenzyl)-2-(pyridylmethyl)aminomethyl]-4-methyl-6-formyl-phenol (HBPAMFF) were immobilized on chitosan biopolymer in order to obtain new adsorbent materials for metal ions. The chitosan derivatives were characterized by IR spectroscopy, DSC, TGA, and CHN analysis. The characterization study proved that the chitosan surface was chemically modified with both complexing agents and however, it is expected that these modifications improve the selectivity for metal ions specific in relation to the chitosan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号