首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chozen system of tellurite glasses doped with rare earth oxides (95% alpha-TeO(2)+5% Sm2O3) was prepared by melt quenching. Consequently, the Raman spectrum (150-1250 cm(-1)) of the modified tellurite have been recorded. As a continuation to our normal coordinate analysis, force constants and quantum mechanical (QM) calculations for tbp TeO4(4-) (triagonal bipyramid, C(2v)) and TeO(3+1); Te2O7(6-) (bridged tetrahedral), we have carried out ab initio frequency calculations for tpy TeO3(2-) (triagonal pyramidal, C(3v) and C(s)) and tp TeO3(2-) (triagonal planar, D(3h)) ions. The quantum mechanical calculations at the levels of RHF, B3LYP and MP2 allow confident vibrational assignments and structural identification in the binary oxide glass (95% alpha-TeO2 +5% Sm2O3). The dominant three-dimensional network structures in the modified glass are triagonal pyramidal TeO3 with minor features of short range distorted tbp TeO4 and bridged tetrahedral unit of TeO(3+1), leading to a structure of infinite chain. Therefore, alpha-TeO2/Sm2O3 (95/5%) glass experience structural changes from TeO4 (tbp); Te2O7 (TeO(3+1))-->TeO3 (tpy).  相似文献   

2.
Sodium phosphate tellurite glasses in the system (NaPO(3))(x)(TeO(2))(1-) (x) were prepared and structurally characterized by thermal analysis, vibrational spectroscopy, X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses, the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units, and no sharing of the network modifier Na(2)O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO(4/2) antiprismatic units. The combined interpretation of the O 1s XPS data and the (31)P solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather, the formation of homoatomic P--O--P and Te--O--Te linkages is favored over mixed P--O--Te connectivities. As a consequence of this chemical segregation effect, the spatial sodium distribution is not random, as also indicated by a detailed analysis of (31)P/(23)Na rotational echo double-resonance (REDOR) experiments.  相似文献   

3.
Raman and infrared spectroscopy has been used to study the structure of selected vanadates including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadates anion (V10O28)6-. Decavanadate consists of four distinct VO6 units which are reflected in Raman bands at the higher wavenumbers. The Raman spectra of these minerals are characterised by two intense bands at 991 and 965 cm(-1). Four pascoite Raman bands are observed at 991, 965, 958 and 905 cm(-1) and originate from four distinct VO6 sites. The other minerals namely barnesite, hewettite, metahewettite and hummerite have similar layered structures to the decavanadates but are based upon (V5O14)3- units. Barnesite is characterised by a single Raman band at 1010 cm(-1), whilst hummerite has Raman bands at 999 and 962 cm(-1). The absence of four distinct bands indicates the overlap of the vibrational modes from two of the VO6 sites. Metarossite is characterised by a strong band at 953 cm(-1). These bands are assigned to nu1 symmetric stretching modes of (V6O16)2- units and terminal VO3 units. In the infrared spectra of these minerals, bands are observed in the 837-860 cm(-1) and in the 803-833 cm(-1) region. In some of the Raman spectra bands are observed for pascoite, hummerite and metahewettite in similar positions. These bands are assigned to nu3 antisymmetric stretching of (V10O28)6- units or (V5O14)3- units. Because of the complexity of the spectra in the low wavenumber region assignment of bands is difficult. Bands are observed in the 404-458 cm(-1) region and are assigned to the nu2 bending modes of (V10O28)6- units or (V5O14)3- units. Raman bands are observed in the 530-620 cm(-1) region and are assigned to the nu4 bending modes of (V10O28)6- units or (V5O14)3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are probably due to VO subunits and MO bonds.  相似文献   

4.
A structural and vibrational theoretical study for vanadyl nitrate was carried out. The Density Functional Theory (DFT) has been used to study vibrational properties. The structures were fully optimized at the B3LYP/6‐31G*, B3LYP/6‐311G*, and B3LYP/6‐311+G* levels of theory and the harmonic vibrational frequencies were evaluated at the same level. The calculated harmonic vibrational frequencies for vanadyl nitrate are consistent with their experimental IR and Raman spectra in gas and liquid phases. Through these calculations a precise knowledge of the normal modes of vibration was obtained, considering the coordination mode adopted by the nitrate group in the mirror plane as monodentate and bidentate. A total assignment of the observed bands in the vibrational spectra for vanadyl nitrate is proposed in this work. The nature of the V–O and V ← O bonds in the compound was systematically and quantitatively investigated by means of the Natural Bond Order (NBO) analysis. The topological properties of the electronic charge density were analyzed employing Bader's Atoms in Molecules theory (AIM).  相似文献   

5.
获取了覆盖N-甲基吡咯-2-甲醛(NMPCA)A-带和B-带电子吸收共7个激发波长的共振拉曼光谱,并结合含时密度泛函理论(TD-DFT)方法研究了的A-带和B-带电子激发和Franck-Condon区域结构动力学.TD-B3LYP/6-311++G(d,p)计算表明:A-带和B-带电子吸收的跃迁主体为π→π*.共振拉曼光谱可以指认为,11-13振动模式(A-带激发)或者7-11振动模式(B-带激发)的基频、倍频和组合频,其中C=O伸缩振动(ν7)、环的变形振动+N1-C6伸缩振动(ν17)、环的变形振动(ν21)和C6-N1-C2/C2-C3-C4不对称伸缩振动(ν14)占据了绝大部分.这表明NMPCA的Sπ激发态结构动力学主要沿C=O伸缩振动、环的变形振动和环上N1-C6伸缩振动等反应坐标展开.在同一溶剂的共振拉曼光谱中随激发波长由长变短,ν7与ν14的强度比呈现出由强变弱再变强的现象,这种变化规律被认为与Franck-Condon区域Sn/Sπ态混合或势能面交叉有关.溶剂对Sn/Sπ态混合或势能面交叉具有调控作用.  相似文献   

6.
The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta = 94.416(1) degrees, Z = 4.  相似文献   

7.
Zhang SY  Hu CL  Sun CF  Mao JG 《Inorganic chemistry》2010,49(24):11627-11636
Six new novel alkaline-earth metal vanadium(V) or vanadium(IV) selenites and tellurites, namely, Sr(2)(VO)(3)(SeO(3))(5), Sr(V(2)O(5))(TeO(3)), Sr(2)(V(2)O(5))(2)(TeO(3))(2)(H(2)O), Ba(3)(VO(2))(2)(SeO(3))(4), Ba(2)(VO(3))Te(4)O(9)(OH), and Ba(2)V(2)O(5)(Te(2)O(6)), have been prepared and structurally characterized by single crystal X-ray diffraction analyses. These compounds exhibit six different anionic structures ranging from zero-dimensional (0D) cluster to three-dimensional (3D) network. Sr(2)(VO)(3)(SeO(3))(5) features a 3D anionic framework composed of VO(6) octahedra that are bridged by SeO(3) polyhedra. The oxidation state of the vanadium cation is +4 because of the partial reduction of V(2)O(5) by SeO(2) at high temperature. Ba(3)(VO(2))(2)(SeO(3))(4) features a 0D [(VO(2))(SeO(3))(2)](3-) anion. Sr(V(2)O(5))(TeO(3)) displays a unique 1D vanadium(V) tellurite chain composed of V(2)O(8) and V(2)O(7) units connected by tellurite groups, forming 4- and 10-MRs, whereas Sr(2)(V(2)O(5))(2)(TeO(3))(2)(H(2)O) exhibits a 2D layer consisting of [V(4)O(14)] tetramers interconnected by bridging TeO(3)(2-) anions with the Sr(2+) and water molecules located at the interlayer space. Ba(2)(VO(3))Te(4)O(9)(OH) exhibits a one-dimensional (1D) vanadium tellurite chain composed of a novel 1D [Te(4)O(9)(OH)](3-) chain further decorated by VO(4) tetrahedra. Ba(2)V(2)O(5)(Te(2)O(6)) also features a 1D vanadium(V) tellurites chain in which neighboring VO(4) tetrahedra are bridged by [Te(2)O(6)](4-) dimers. The existence of V(4+) ions in Sr(2)(VO)(3)(SeO(3))(5) is also confirmed by magnetic measurements. The results of optical diffuse-reflectance spectrum measurements and electronic structure calculations based on density functional theory (DFT) methods indicate that all six compounds are wide-band gap semiconductors.  相似文献   

8.
IR and Raman spectroscopy study on two collected cyclosilicate species: schorl (from tourmaline group), Na(Fe,Mg)(3)Al(6)(BO(3))(3)Si(6)O(18)(OH,F)(4) and beryl (Be,Mg,Fe)(3)Al(2)Si(6)O(18) were carried out. Although beryl is nominally anhydrous mineral, vibrational results strongly indicate that H(2)O molecules exist in the structural channels. The number of vibrational bands and their frequencies revealed the presence of H(2)O type II, in which C(2) symmetry axis of the water molecule is parallel to the structural channel (and to the c-axis of beryl). On the other hand, it was found that observed bands in the IR and Raman OH stretching region of the other tourmaline varieties appear as a result of the cation combinations involving dominant presence of Mg and Fe cations in the Y structural sites. The strong indication derived from the vibrational spectroscopic results that the studied mineral represents a schorl variety, coincide very well with the results obtained by powder X-ray diffraction and X-ray microprobe analysis. Both minerals show IR spectral similarities in the region below 1500 cm(-1), whereas the resemblance between the Raman spectra (1500-100 cm(-1)) is less expressed confirming that these spectra are more sensitive to compositional changes and to structural disorder. The identification of both minerals was additionally supported by studying the powder X-ray diffraction diagrams.  相似文献   

9.
10.
The optical spectrum of Mn2+ in octahedral coordination for sursassite is characterized by well resolved bands at 580, 515, 470, 390, 340, and 295 nm (17240, 19420, 21280, 25640, 29410 and 33900 cm-1). Crystal field parameters evaluated from the observed bands are Dq=690, B=680 and C=2800 cm-1. A broad band centred around 13000 cm-1 attributed to Fe(III) ion is an impurity in sursassite confirmed from EDX analysis. Vibrational spectra have been investigated both by IR and Raman spectroscopy. The correlation between vibrational modes and the structural properties of the manganese silicate, sursassite, is made and compared with other silicates. Two vibrational modes of CO(3)2- observed; the antisymmetric stretching mode (nu3) at 1420 cm-1 (IR active) and the out-of-plane bending mode (nu2) (IR and Raman active) at approximately 875 cm-1. This confirms the Mn rich phases in sursassite as observed from SEM probably an Mn carbonate-rhodochrosite.  相似文献   

11.
We have carried out a structural and vibrational theoretical study for chromyl nitrate. The density functional theory has been used to study its structure and vibrational properties. The geometries were fully optimised at the B3LYP/Lanl2DZ, B3LYP/6-31G* and B3LYP/6-311++G levels of theory and the harmonic vibrational frequencies were evaluated at the same levels. The calculated harmonic vibrational frequencies for chromyl nitrate are consistent with the experimental IR and Raman spectra in the solid and liquid phases. These calculations gave us a precise knowledge of the normal modes of vibration taking into account the type of coordination adopted by nitrate groups of this compound as monodentate and bidentate. We have also made the assignment of all the observed bands in the vibrational spectra for chromyl nitrate. The nature of the Cr-O and Cr<--O bonds in the compound were quantitatively investigated by means of Natural Bond Order (NBO) analysis. The topological properties of electronic charge density are analysed employing Bader's Atoms in Molecules theory (AIM).  相似文献   

12.
Jiang HL  Xie Z  Mao JG 《Inorganic chemistry》2007,46(16):6495-6501
Two new nickel(II) molybdenum(VI) selenium(IV) and tellurium(IV) oxides generally formulated as Ni3(Mo2O8)(XO3) (X = Se, Te) have been synthesized by solid-state reactions of NiO, MoO3, and SeO2 (or TeO2). Both compounds feature 3D network structures built of [Mo4O16]8- tetranuclear cluster units and 2D nickel(II) selenite or tellurite layers. The nickel(II) selenite layer in Ni3(Mo2O8)(SeO3) is formed by [Ni6O22]32- hexanuclear clusters interconnected by selenite groups whereas the thick nickel(II) tellurite layer in Ni3(Mo2O8)(TeO3) is constructed by corrugated nickel(II) oxide chains bridged by the tellurite groups. The results of magnetic property measurements indicate that there are considerable ferromagnetic interactions between nickel(II) centers in both compounds. Their optical properties and band structures have been also studied.  相似文献   

13.
The pseudo-binary Na2B4O7-[Na3AlF6-TiO2]11 system has been investigated at room temperature by means of X-ray diffraction, IR, Raman, and UV-vis spectroscopies. Evolution of the different spectra with Na2B4O7 and TiO2 contents evidenced the breaking-up of the large borate rings in favor of small borate units, the diminution of the BIV fraction, and the partial substitution of oxygen by fluorine with the formation of oxyfluoride species. Two domains of compositions are described: a TiO2-rich region with 20-50% Na2B4O7 with the lowering of boron coordination and formation of Ti(O,F)6 units and a TiO2-poor region with 60-90% Na2B4O7 where the Na3AlF6 modifier behavior is predominant. The enhanced modifier effect of [Na3AlF6-TiO2]11 in comparison with pure Na3AlF6 on the vitreous network of Na2B4O7 consists of fluorine preference for binding to higher strength cations, Ti4+, over Al3+ and Na+ respectively, when TiO2 addition exceeds 5 wt %.  相似文献   

14.
The cysteinate glycinate cadmium(II) complex was synthesized and structural analysis was carried out using the following methods: determination of the C, H, N, S and O contents, thermogravimetry, infrared and Raman spectra. The most probable structure for the complex at a minimum of energy was calculated by the density functional theory (DFT):B3LYP/3-21G quantum mechanical method. The infrared and Raman spectra were analyzed and bands assigned through the DFT procedures, the stabilization energy being equal to: E(RB+HF-LYP)= -6442.67784a.u. Features of the infrared and Raman spectra confirm theoretical structural prediction with respect to the metal-ligand bonds: Cd-O, Cd-S and Cd-N. Full assignment of the vibrational spectra was also supported by a carefully analysis of the distorted geometries generated by the normal modes.  相似文献   

15.
The previously unknown Zr(IV)-monosubstituted Keggin-type polyoxometalates (Zr-POMs), (n-Bu4N)7H[{PW11O39Zr(mu-OH)}2] (1), (n-Bu4N)8[{PW11O39Zr(mu-OH)}2] (2), and (n-Bu4N)9[{PW11O39Zr}2(mu-OH)(mu-O)] (3) differing in their protonation state, have been prepared starting from heteropolyacid H5PW11ZrO40.14H2O. The compounds were characterized by elemental analysis, potentiometric titration, X-ray single-crystal structure, and IR, Raman, and 31P and 183W NMR spectroscopy. The single-crystal X-ray analysis of 2 reveals that two Keggin structural units [PW11O39Zr]3- are linked through two hydroxo bridges Zr-(OH)-Zr with Zr(IV) in 7-fold coordination. The IR spectra of 1 and 2 show a characteristic band at 772 cm(-1), which moves to 767 cm(-1) for 3, reflecting deprotonation of the Zr-(OH)-Zr bond. Potentiometric titration with methanolic Bu4NOH indicates that 1-3 contain 2, 1, and 0 acid protons, respectively. (83W NMR reveals Cs symmetry of 2 and 3 in dry MeCN, while for 1, it discovers nonequivalence of its two subunits and their distortion resulting from localization of the acidic proton on one of the Zr-O-W bridging O atoms. The (31)P NMR spectra of 2 and 3 differ insignificantly in dry MeCN, showing only signals at delta -12.46 and -12.44 ppm, respectively, while the spectrum of 1 displays two resonances at delta -12.3 (narrow) and -13.2 (broad) ppm, indicating slow proton exchange on the (31)P NMR time scale. The theoretical calculations carried out at the density functional theory level on the dimeric species 1-3 propose that protonation at the Zr-O-Zr bridging site is more favorable than protonation at Zr-O-W sites. Calculations also revealed that the doubly bridged hydroxo structure is thermodynamically more stable than the singly bridged oxo structure, in marked contrast with analogous Ti- and Nb-monosubstituted polyoxometalates. The interaction of 1-3 with H(2)O and H(2)O(2) in MeCN has been studied by both (31)P and (183)W NMR. The stability of the [PW(11)O(39)ZrOH](4-) structural unit toward at least 100-fold excess of H2O2 in MeCN was confirmed by both NMR and Raman spectroscopy. The interaction of 1 and 2 with H2O in MeCN produces most likely monomeric species (n-Bu4N)3+n[PW11O39Zr(OH)(n(H2O)(3-n)] (n = 0 and 1) showing a broad 31P NMR signal at delta -13.2 ppm, while interaction with H2O2 leads to the formation of an unstable peroxo species (delta -12.3 ppm), which reacts rapidly with cyclohexene, producing 2-cyclohexen-1-one and trans-cyclohexane-1,2-diol. Both 1 and 2 show a pronounced catalytic activity in H2O2 decomposition and H2O2-based oxidation of organic substrates, including cyclohexene, alpha-pinene, and 2,3,6-trimethylphenol. The oxidation products are consistent with those of a homolytic oxidation mechanism. On the contrary, 3 containing no acid protons reacts with neither H2O nor H2O2 and shows negligible catalytic activity. The Zr-monosubstituted polyoxometalates can be used as tractable homogeneous probes of Zr single-site heterogeneous catalysts in studying mechanisms of H2O2-based oxidations.  相似文献   

16.
采用含时量子波包理论的简单模型对5-氯尿嘧啶和尿嘧啶的共振拉曼光谱开展了强度分析拟合, 获得了1(π, π*)激发态的几何结构变化动态特征. 结果表明, 尿嘧啶1S0→1S2跃迁的动态结构特征因5-位氯原子取代而改变. 5-氯尿嘧啶的动态结构特征主要沿C5=C6伸缩振动+C6H12 弯曲振动和N3H9/N1H7弯曲振动+N1C6伸缩振动反应坐标展开, 而尿嘧啶的动态结构特征主要沿嘧啶环的伸缩振动+C5H11/C6H12/N1H7弯曲振动和C4=O10伸缩振动反应坐标展开. π和π*轨道中氯原子的pz电子参与嘧啶环的p-π共轭作用导致了在1(π, π*)激发态上5-氯尿嘧啶的振动重组能更多地配分给嘧啶环的弯曲振动模式和C5=C6伸缩振动模式. 尿嘧啶在甲醇中的激发态动态结构特征与在水中的基本一致, 但波包沿C5H11/C6H12/N1H7弯曲振动+N1C6伸缩振动(υ12)和环呼吸振动(υ17)反应坐标的运动明显增强.  相似文献   

17.
Kim Y  Martin SW 《Inorganic chemistry》2004,43(9):2773-2775
The thioborate phase Ba7(BS3)4S was synthesized from solid state reaction and its crystal structure determined by single crystal X-ray diffraction analysis. It crystallizes in the monoclinic space group C2/c (No. 15) with a = 10.1750(15) A, b = 23.970(4) A, c = 10.1692(15) A, beta = 90.095(2) degrees, and Z = 4. The structure consists of isolated trigonal planar (BS3)3- anions, and isolated S2- anions and Ba2+ cations. The additional sulfur anions have five-fold barium coordination, while the barium cations are coordinated by eight or nine sulfur atoms. Powder X-ray diffraction patterns from a bulk sample are compared to the calculated diffraction pattern from the single crystal structural analysis, and there is excellent agreement in general. The vibrational modes of the isolated (BS3)3- units were measured from Raman scattering and IR absorption spectra, and the frequencies agree very well with those found for similar orthothioborate phases.  相似文献   

18.
IntroductionThe organotin( ) derivatives of carboxylicacids have been extensively studied due to their bio-logical activities[1— 4] . In recent years more andmore reports on the synthesis,antitumour activi-ties,biocidal activities,antibiotic activities andstructural elucidation of various organotin ( )derivatives of carboxylic acids have appeared[5— 10 ] .In particular,the diorganotin ( ) complexes ofcarboxylic acids have aroused a considerable inter-est of some scientists in the structur…  相似文献   

19.
Two new mixed-metal tellurites, Na1.4Nb3Te4.9O18 and NaNb3Te4O16, have been synthesized by standard solid-state techniques using Na2CO3, Nb2O5, and TeO2 as reagents. The structures of Na1.4Nb3Te4.9O18 and NaNb3Te4O16 were determined by single-crystal X-ray diffraction. Both of the materials exhibit three-dimensional structures composed of NbO6 octahedra, TeO4, and TeO3 polyhedra. The Nb5+ and Te4+ cations are in asymmetric coordination environments attributable to second-order Jahn-Teller (SOJT) effects. The Nb5+ cations undergo an intraoctahedral distortion toward a corner (local C4 direction), whereas the Te4+ cations are in distorted environments owing to their nonbonded electron pair. Infrared and Raman spectroscopy, UV-vis diffuse reflectance spectroscopy, thermogravimetric analysis, and dielectric measurements were also performed on the reported materials. Crystal data: Na1.4Nb3Te4.9O18, monoclinic, space group C2/m (No. 12), with a = 32.377(5) A, b = 7.4541(11) A, c = 6.5649(9) A, beta = 95.636(5) degrees, V = 1576.7(4) A3, and Z = 4; NaNb3Te4O16, monoclinic, space group P2(1)/m (No. 11), with a = 6.6126(13) A, b = 7.4738(15) A, c = 14.034(3) A, beta = 102.98(3) degrees, V = 675.9(3) A3, and Z = 2.  相似文献   

20.
A novel polyoxometalate-based organic-inorganic polymer [{Ca(DMF)5}2SiMo12O40]n has been synthesized and characterized by elemental analysis, IR, UV and X-ray single-crystal structural analysis. The title compound crystallizes in a monocline lattice, P21/n, with a =1.3379(3), b = 1.9796(4), c = 1.4574(3) nm, β = 92.24(3)°, V = 3.8568(13) nm3, Z = 2, R1 = 0.083 and Rw = 0.2065. The result of crystal structure analysis indicates that Ca2+ is surrounded by seven coordination oxygen atoms with pentagonal bipyramidal geometry and bridged with terminal oxygen atom of polyanion in the structure. The compound contains an unprecedented one-dimensional linear chain built by alternate polyanions and cationic units through Mo-Od-Ca-O-Ca links in crystal. The IR spectra and X-ray crystallography analysis exhibit that there is a strong interaction between the polyanion and organic group in solid state. The electronic spectra (λ = 200-500 nm) for the title compound dissolved in the mixed solvent of acetonitrile and  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号