首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental studies were conducted to realize displacement performance effect of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) on hyperbranched poly(AM/AA/AMPS/GA), which was successfully synthesized via free radical polymerization using modified dendritic functional monomer (GA), acrylamide (AM), acrylate (AA), and 2-acrylamido-2-methyl propane sulfonic acid (AMPS). Compared with individual polymer, SP (surfactant polymer) binary systems showed lower apparent viscosity, interfacial tension, and hydrodynamic radius as the result of the electrostatic repulsion between the tail end of hydrophilic polymer branched chain and the head of the surfactant. It was found from abundant static adsorption and dynamic retention tests that the values of static adsorption and dynamics retention of SDBS which is mixed with hyperbranched polymer decrease due to the competitive interaction. However, unlike this phenomenon, SDBS would heighten the dynamic retention value of poly(AM/AA/AMPS/GA), resulting in addition of residual resistance factor. Oil displacement experiment indicated that SP solutions have greater capability of enhance oil recovery than individual polymer under same conditions.  相似文献   

2.
As compared to China’s overall oil reserves, the reserve share of offshore oilfields is rather significant. However, offshore oilfield circumstances for enhanced oil recovery (EOR) include not just severe temperatures and salinity, but also restricted space on offshore platforms. This harsh oil production environment requires polymers with relatively strong salt resistance, solubility, thickening ability, rapid, superior injection capabilities, and anti-shearing ability. As a result, research into polymers with high viscosity and quick solubility is recognized as critical to meeting the criteria of polymer flooding in offshore oil reservoirs. For the above purposes, a novel hydrophobically associating polymer (HAP) was prepared to be used for polymer flooding of Bohai offshore oilfields. The synthetic procedure was free radical polymerization in aqueous solutions starting at 0 °C, using acrylamide (AM), acrylic acid (AA), 2-acrylamido-2-methylpropane sulfonic acid (AMPS), and poly(ethylene glycol) octadecyl methacrylate (POM) as comonomers. It was discovered that under ideal conditions, the molecular weight of HAP exceeds 2.1 × 107 g⋅mol−1. In a simulated reservoir environment, HAP has substantially greater solubility, thickening property, and salt resistance than conventional polyacrylamide (HPAM), with equivalent molecular weight. Finally, the injectivity and propagation of the two polymers in porous media were investigated. Compared with HPAM, which has a similar molecular weight, HAP solution with the concentration of 0.175% had a much better oil displacement effect in the porous medium, which can enhance oil recovery by 8.8%. These discoveries have the potential to pave the way for chemical EOR in offshore oilfields.  相似文献   

3.
A novel hydrophobically modified polyacrylamide p(AM/NaA/OP-10-AC/BOAM) was successfully synthesized via an aqueous micellar copolymerization method from acrylamide (AM), sodium acrylate (NaA), octylphenol polyoxyethylene acrylate (OP-10-AC), and small amounts of N-benzyl-N-octylacrylamide (BOAM), with the aim of investigating the copolymer's rheological behaviors under various conditions such as polymer concentration, shearing, temperature, and salinity. The copolymer was characterized by infrared spectroscopy, scanning electron microscopy, and atomic force microscope. Scanning electron micrographs show large aggregates in solution formed by the association from the hydrophobic groups of the copolymer. Compared with partially hydrolyzed polyacryamide (HPAM), the copolymer shows a much higher thickening capability and a much greater ability to resist shearing, heat, and salts. This good property of the copolymer is attributed to its three-dimensional dimensional network structure. According to the core flooding test, it can be obtained that oil recovery is enhanced about 4.3% by the copolymer flooding contrasted to the HPAM flooding in mid-low permeability cores under conditions of 1500 mg/L of polymers and 45°C. All the results prove that the copolymer has the capability of increasing oil recovery by improving waterflood sweep efficiency in high-salinity reservoirs.  相似文献   

4.
在中低渗透高温高盐油藏聚合物驱技术中, 超高相对分子质量聚丙烯酰胺(HPAM)存在不易注入、剪切降粘显著和耐温抗盐性能差等问题。 本文以丙烯酰胺(AM)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为单体, 采用过硫酸胺(NH4)2S2O8和甲基丙烯酸N, N-二甲氨基乙酯(DMAEMA)作为支化结构复合引发体系, 通过共聚后水解工艺, 合成含支化结构耐温抗盐驱油共聚物P(AM/AMPSNa/AANa)。 研究了引发温度、链转移剂用量、引发剂用量对共聚物特性黏数的影响, 并通过红外光谱(IR)和13C NMR表征了产物结构。 筛选特性黏数1915 mL/g左右的共聚物, 进行性能评价。 实验结果表明, 共聚物具有优异的耐温抗盐性能、抗剪切性能、抗老化性、注入性和驱油性能, 可应用在中低渗透高温高盐油藏三次采油中。  相似文献   

5.
In order to improve the success rate of practical application of an organic polymer conformance control agent in a fractured low permeability reservoir, the transportation characteristics of hydrolyzed polyacrylamide (HPAM) solution in micro-fracture is systematically studied by displacement experiments using the visual model and fractured cores. The results are as follows: (1)There is no threshold pressure for HPAM solution transportation in micro-fracture, and its flow is linear at a certain range of flow rate. (2) There is an appropriate corresponding range between the viscosity of HPAM solution and fracture permeability, which can provide guidance for screening out the appropriate molecular weight or concentration to obey the permeability. (3)Flow resistance of HPAM solution in the micro-fracture is lower than that in porous media at the same water phase permeability, but the difference degree of flow resistance is reduced with the increase of permeability. (4)When the aperture of the lower permeability fractured core in the parallel combination is high, the shunt flow volume of HPAM solution is linear. When the aperture is low, the shunt flow volume is nonlinear. The experimental results can provide important guidance for optimization and application of the polymer conformance control agent in a fractured low permeability reservoir.  相似文献   

6.
不同类型聚合物溶液对采油残余油的作用机理研究   总被引:6,自引:0,他引:6  
通过实验测定了HPAM溶液和黄原胶溶液的流变性、在多孔介质中的流变性和残余阻力系数 ,计算了衰竭层效应 .用不同的浓度和注入速度进行了驱油实验 .提出聚合物分子缠结作用的增强不仅引起表观粘度增加或衰竭层厚度降低 ,而且使平行于油水界面的拉动残余油的力增加 ,从而使残余油饱和度降低 ,采收率提高 .随浓度增加 ,HPAM溶液的表观粘度和残余阻力系数增加 ,衰竭层厚度减小 ;黄原胶溶液的浓度高于缠结浓度时 ,衰竭层厚度和表观粘度变化不大 .注入速度增加时 ,两种聚合物溶液的衰竭层厚度均降低 ,HPAM溶液的残余阻力系数不变 ,粘弹性增加 ;而黄原胶溶液的残余阻力系数下降 .不同浓度和注入速度情况下两种聚合物溶液的驱油结果证实了文中提出的聚合物分子缠结作用和衰竭层效应对残余油的作用机理 .分子结构的不同是造成两种聚合物溶液在多孔介质中渗流规律和对残余油作用机理的差别的根本原因 .  相似文献   

7.
In this article, maleic anhydride was used to attain the modified β-cyclodextrin (MAH-β-CD), and the MAH-β-CD was copolymerized with acrylamide (AM), acrylic acid (AA), and 2-acrylamido-2-methyl propane sulfonic acid (AMPS) via free radical copolymerization. The polymerization conditions were optimized through single-variable method. Subsequently, the copolymer structure was characterized through Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1HNMR) spectroscopy, and scanning electron microscopy (SEM). The three-dimensional network structure formed in aqueous solutions was observed via experimental results of SEM. Subsequently, several aspects of the properties of the copolymer, such as temperature tolerance, shear tolerance, salt resistance, and oil displacement ability, were investigated by comparing with hydrolyzed polyacrylamide (HPAM). Results indicate that the copolymer showed better performances than HPAM; thus, it could be concluded that the introduction of β-cyclodextrin in the polymer chain was helpful in enhancing the oil displacement efficiency in high-temperature and high-salinity oil field.  相似文献   

8.
部分水解聚丙烯酰胺柠檬酸铝体系临界交联浓度的研究   总被引:6,自引:0,他引:6  
采用落球粘度计、核孔膜过滤、动态光散射 (DLS)和2 7Al NMR法 ,研究了高分子量、低浓度的部分水解聚丙烯酰胺 (HPAM)与柠檬酸铝 (AlCit)体系形成交联聚合物溶液 (LPS)的临界交联浓度 .研究结果表明 ,HPAM AlCit体系在聚合物浓度较低时 ,溶液中主要发生形成交联聚合物线团 (LPC)的交联反应 ,此时形成的是LPS ,聚合物浓度增加到某一临界值后 ,体系中形成线团后 ,存在线团间的交联 ,此时形成的是弱凝胶 .不同方法所测得的HPAM AlCit体系的临界交联浓度基本相同 ,对于粘均相对分子质量为 1 4× 10 7的HPAM ,在NaCl浓度为 2 0 0 0mg L ,交联比 2 0∶1时形成的交联体系 ,其临界交联浓度在 2 0 0~ 30 0mg L间 .  相似文献   

9.
New poly (vinylidenefluoride-co-hexafluoro propylene) (PVDF-HFP)/CeO2-based microcomposite porous polymer membranes (MCPPM) and nanocomposite porous polymer membranes (NCPPM) were prepared by phase inversion technique using N-methyl 2-pyrrolidone (NMP) as a solvent and deionized water as a nonsolvent. Phase inversion occurred on the MCPPM/NCPPM when it is treated by deionized water (nonsolvent). Microcomposite porous polymer electrolytes (MCPPE) and nanocomposite porous polymer electrolytes (NCPPE) were obtained from their composite porous polymer membranes when immersed in 1.0 M LiClO4 in a mixture of ethylene carbonate/dimethyl carbonate (EC/DMC) (v/v = 1:1) electrolyte solution. The structure and porous morphology of both composite porous polymer membranes was examined by scanning electron microscope (SEM) analysis. Thermal behavior of both MCPPM/NCPPM was investigated from DSC analysis. Optimized filler (8 wt% CeO2) added to the NCPPM increases the porosity (72%) than MCPPM (59%). The results showed that the NCPPE has high electrolyte solution uptake (150%) and maximum ionic conductivity value of 2.47 × 10−3 S cm−1 at room temperature. The NCPPE (8 wt% CeO2) between the lithium metal electrodes were found to have low interfacial resistance (760 Ω cm2) and wide electrochemical stability up to 4.7 V (vs Li/Li+) investigated by impedance spectra and linear sweep voltammetry (LSV), respectively. A prototype battery, which consists of NCPPE between the graphite anode and LiCoO2 cathode, proves good cycling performance at a discharge rate of C/2 for Li-ion polymer batteries.  相似文献   

10.
More than 50% of oil is trapped in petroleum reservoirs after applying primary and secondary recovery methods for removal. Thus, to produce more crude oils from these reservoirs, different enhanced oil recovery (EOR) approaches should be performed. In this research, the effect of hydrophilic nanoparticles of SiO2 at 12 nm size, in (EOR) from carbonate reservoir is systematically investigated. Using this nanoparticle, we can increase viscosity of the injection fluid and then lower the mobility ratio between oil and nanofluid in carbonate reservoirs. To this end, a core flooding apparatus was used to determine the effectiveness and robustness of nanosilica for EOR from carbonate reservoirs. These experiments are applied on the reservoir carbonate core samples, which are saturated with brine and oil that was injected with nanoparticles of SiO2 at various concentrations. The output results depict that, with increasing nanoparticle concentration, the viscosity of the injection fluid increases and results in decreased mobility ratio between oil and nanofluid. The results confirm that using the nanoparticle increases the recovery. Also, increasing the nanoparticle concentration up to 0.6% increases the ultimate recovery (%OOIP), but a further increase to 1.0 does not have a significant effect.  相似文献   

11.
用激光光散射技术研究了丙烯酰胺 丙烯酸共聚物 (简称P(AM AA) )的溶液行为 .结果表明 ,纯水中P(AM AA)分子的流体力学半径Rh的分布存在 10 0~ 5 0 0nm的范围 ,与溶液中的网状结构对应 .当加入NaCl后 ,Rh 分布变窄 ,集中在 10 0nm以下的范围内 ,10 0~ 5 0 0nm这一范围消失 ,说明P(AM AA)在纯水溶液中主要以网状结构存在 ,小分子盐如NaCl的加入会破坏这种网状结构 .网状结构的破坏导致溶液稳定性下降 ,在0 1mol LNaCl溶液中 ,当c c 时 ,放置一段时间后 ,溶液中出现白色絮状沉淀 .  相似文献   

12.
Relative permeability of polymer flooding plays a very important role in oil field development. This paper aimed to measure and calculate the relative permeability curves of polymer flooding more accurately. First, viscosity variation law of polymer in porous media was studied. Rock particles of different diameters and cementing agent were used to make artificial cores and hydrophobically associating polymer solutions were prepared for experiments. Polymer solutions were injected into the cores filled with crude oil and irreducible water. In the process of polymer flooding, produced fluid was collected at different water saturations and locations of the core. Polymer solutions were separated and their viscosities were measured. With the experimental data, the viscosity variation rule of polymer transporting in porous media was explored. The result indicates that the viscosity retention rate of polymer solutions transporting in porous media has power function relationship with the water saturation and the dimensionless distance from the core inlet. Finally, the relative permeability curves of polymer flooding were measured by unsteady state method and the viscosity variation rule was applied to the calculation of the relative permeability curves.  相似文献   

13.
Although alkaline/surfactant/polymer (ASP) flooding is successfully applied in oil fields, some disadvantages such as scales, corrosion effects, and viscosity reductions of polymer solutions appear. Usage of organic alkalis can avoid or decrease these disadvantages. In this paper, the physicochemical properties, including interfacial tension (IFT), and viscosity, of organic alkali combinational flooding solutions and their effectiveness as enhanced oil recovery agents are investigated. Monoethanolamine (MEA) is the optimal one for decreasing the IFT among the three organic alkalis studied in this paper. Although MEA cannot decrease the IFT as low as NaOH does, it has good compatibility with both surfactant and the polymer hydrolyzed polyacrylamide (HPAM). MEA not only helps a surfactant solution or HPAM/surfactant mixture attain ultralow IFT values, but can also promote better viscosity stability for HPAM or HPAM/surfactant solutions compared to NaOH. Moreover, core flood experiments show that adding MEA can obtain additional tertiary oil recovery of 6%–10% original oil in place (OOIP) on the top of HPAM or HPAM/surfactant flooding, although MEA has a lower enhanced oil recovery than NaOH. The experimental results show that MEA is a good choice to replace NaOH in enhancing heavy oil recovery.  相似文献   

14.
The possibility of formation of the mixed matrix membranes NH2—MIL-101(Al) under the conditions of microwave activation of the reaction mixture at atmospheric pressure is studied. Microwave irradiation affects the morphology and crystallite size and significantly shortens the synthesis time (from tens of hours to 10—30 min). The obtained samples of NH2—MIL-101(Al) with a crystallite size of 100 nm were used as nanofillers for polymer matrix based on the PIM-1 polymer with intrinsic microporosity for the preparation of hybrid membrane materials. Gas permeability for a series of gases was measured on the synthesized membranes.  相似文献   

15.
The concept of profile control is one of the most important strategies to enhance oil recovery in a high water production field, with polymer gels being used as a gelant matrix in various reservoirs around the globe. In an effort to reach a suitable profile control, previous attempts lead to an increase of polymer concentration, resulting in a poor injection and insufficient in-depth profile control. The work presented here introduces a novel gel system, using both key functional groups on HPAM to react with two types of cross-linking agents. Different formulations and the properties of this double cross-linked HPAM gel system have been studied. The experimental results indicate that the studied double cross-linked HPAM gel system exhibits a higher gel strength, an improved salt and shear resistance as well as an improved plugging effect compared to a single cross-linked HPAM gel system. Moreover, as a result of higher gel strength, the double cross-linked HPAM gel system also shows a longer gelation time, a parameter particularly useful for in-depth profile control. The gel microstructures have been evaluated, with the double cross-linked HPAM gel exhibiting a molecular structure that is more compact. The latter is a clear indication for the improved properties of the system as will be detailed in subsequent sections.  相似文献   

16.
Sulfonated polyvinylchloride (SPVC) cation-exchange membranes were coated using chitosan solutions comprising different amounts of Fe3O4 nanoparticles. Influence of chitosan immobilization as well as nanofiller concentration on the electrochemical performance of the membranes was investigated. Electrochemical properties of the membranes including permselectivity, ionic permeability, and areal resistance were studied using an equipped electrodialysis setup and NaCl solution as model electrolyte. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were employed for membrane characterization. Electrochemical performance of the SPVC membranes was improved by coating chitosan polymer. In addition, ionic permeability and permselectivity of the membranes were initially raised by increasing nanoparticles concentration from nil to 2 wt% and then decreased by further insertion of the nanofiller. The areal resistance of the plain SPVC membrane was decreased from 9.4 to 2.9 (ohm) by coating of chitosan solution including optimum value of nano-Fe3O4 due to electrical potential field enhancement across the membrane.
Graphical Abstract Chitosan-coated cation-exchange membranes for electrodialysis process
  相似文献   

17.
Nano-structured WO3-TiO2 layers were prepared by the sol-gel route. To obtain transparent, porous and crack free layers up to 0.8 μ m with a single dipping cycle a templating strategy was used. As a template three-dimensionally network based on organically modified silane was introduced to the WO3 and TiO2 sols. The WO3 layers were dip-coated onto the conductive glass substrate (TCO) and the TiO2 layers on the top of the WO3 layer. The morphology and the structure of the layers were determined by Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HR-TEM), Energy Dispersive X-Ray Spectroscopy (EDXS), Auger and Infrared spectroscopy. SEM image of the WO3-TiO2 layer confirmed the nano-porosity of the layers and give the size of the particles of about 10 nm for TiO2 and 30 nm for WO3 layer. Further analysis indicated that the titanium sol penetrates the WO3 layer. Particles in the WO3 layer consist of a crystalline monoclinic WO3 core surrounded by a 5–10 nm amorphous phase consisting of WO3, TiO2 and SiO2. The WO3-TiO2 layers were used to assemble all solid state photoelectrochromic (PE) devices. Under 1 sun irradiation (1000 W/m2) the visible transmittance of the PE device changes from 62% to 1.6%. The colouring and bleaching processes last about 10 minutes.  相似文献   

18.
The impedance of a porous gold electrode in contact with solid electrolyte La0.88Sr0.12Ga0.82Mg0.18O2.85 and the effect of the manufacture conditions on its polarization resistance are studied at 600–800°C in air. The overall oxygen reaction rate on a gold electrode is described as the sum of two partial constituents, namely, the oxygen exchange at the gas/electrolyte interface at the gold/gas/electrolyte triple-phased boundary.Translated from Elektrokhimiya, Vol. 41, No. 2, 2005, pp. 190–197.Original Russian Text Copyright © 2005 by Shkerin, Sokolova, Khlupin, Beresnev.This revised version was published online in April 2005 with corrections to the article note and article title and cover date.  相似文献   

19.
The polymerization of bis(4‐ethynylphenyl)methylsilane catalyzed by RhI(PPh3)3 afforded a regio‐ and stereoregular hyperbranched polymer, hb‐poly[(methylsilylene)bis(1,4‐phenylene‐trans‐vinylene)] (poly( 1 )), containing 95% trans‐vinylene moieties. The weight loss of this polymer at 900°C in N2 was 9%. Poly( 1 ) displayed an absorption due to π‐π* transition around 275 nm as a shoulder and a weak absorption around 330 nm due to π‐to‐σ charge transfer, which was hardly seen in the corresponding linear polymer.  相似文献   

20.
Gas transport properties of novel hyperbranched polyimide/hydroxy polyimide blends and their silica hybrid membranes were investigated. Gas permeability coefficients of the blend membranes showed positive deviation from a semilogarithmic additive rule. The enhanced gas permeability were resulted from the increase in free volume elements caused by the intermolecular interaction between terminal amine groups of the hyperbranched polyimide and hydroxyl groups of the hydroxy polyimide backbone. Additionally, CO2/CH4 separation ability of the blend membranes was markedly promoted by hybridization with silica. The remarkable CO2/CH4 separation behavior was considered to be due to characteristic distribution and interconnectivity of free volume elements created by the incorporation of silica. For the hyperbranched polyimide/hydroxy polyimide blend system, polymer blending and hybridization techniques synergistically provided the excellent CO2/CH4 separation ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号