首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The periodic vehicle routing problem (PVRP) consists in establishing a planning of visits to clients over a given time horizon so as to satisfy some service level while optimizing the routes used in each time period. The tactical planning model considered here restricts its attention to scheduling visits and assigning them to vehicles while leaving sequencing decisions for an underlying operational model. The objective is twofold: to optimize regional compactness of the routes in a desire to specialize routes to restricted geographical area and to balance the workload evenly between vehicles. Approximate solutions are constructed using a truncated column generation procedure followed by a rounding heuristic. This mathematical programming based procedure can deal with problems with 50–80 customers over five working days which is the range of size of most PVRP instances treated in the literature with meta-heuristics. The paper highlights the importance of alternative optimization criteria not accounted for in standard operational models and provides insights on the implementation of a column generation based rounding heuristic.  相似文献   

2.
In this paper, we study an extension of the PVRP where the vehicles can renew their capacity at some intermediate facilities. Each vehicle returns to the depot only when its work shift is over. For this problem we propose a tabu search (TS) algorithm and present computational results on a set of randomly generated instances and on a set of PVRP instances taken from the literature.  相似文献   

3.
We describe a solution procedure for a special case of the periodic vehicle routing problem (PVRP). Operation managers at an auto parts manufacturer in the north of Spain described the optimization problem to the authors. The manufacturer must pick up parts (raw material) from geographically dispersed locations. The parts are picked up periodically at scheduled times. The problem consists of assigning a pickup schedule to each of its supplier’s locations and also establishing daily routes in order to minimize total transportation costs. The time horizon under consideration may be as long as 90 days. The resulting PVRP is such that the critical decision is the assignment of locations to schedules, because once this is done, the daily routing of vehicles is relatively straightforward. Through extensive computational experiments, we show that the metaheuristic procedure described in this paper is capable of finding high-quality solutions within a reasonable amount of computer time. Our main contribution is the development of a procedure that is more effective at handling PVRP instances with long planning horizons when compared to those proposed in the literature.  相似文献   

4.
The design of distribution systems raises hard combinatorial optimization problems. For instance, facility location problems must be solved at the strategic decision level to place factories and warehouses, while vehicle routes must be built at the tactical or operational levels to supply customers. In fact, location and routing decisions are interdependent and studies have shown that the overall system cost may be excessive if they are tackled separately. The location-routing problem (LRP) integrates the two kinds of decisions. Given a set of potential depots with opening costs, a fleet of identical vehicles and a set of customers with known demands, the classical LRP consists in opening a subset of depots, assigning customers to them and determining vehicle routes, to minimize a total cost including the cost of open depots, the fixed costs of vehicles used, and the total cost of the routes. Since the last comprehensive survey on the LRP, published by Nagy and Salhi (2007), the number of articles devoted to this problem has grown quickly, calling a review of new research works. This paper analyzes the recent literature (72 articles) on the standard LRP and new extensions such as several distribution echelons, multiple objectives or uncertain data. Results of state-of-the-art metaheuristics are also compared on standard sets of instances for the classical LRP, the two-echelon LRP and the truck and trailer problem.  相似文献   

5.
As shown in recent researches, the costs in distribution systems may be excessive if routes are ignored when locating depots. The location routing problem (LRP) overcomes this drawback by simultaneously tackling location and routing decisions. This paper presents a new metaheuristic to solve the LRP with capacitated routes and depots. A first phase executes a GRASP, based on an extended and randomized version of Clarke and Wright algorithm. This phase is implemented with a learning process on the choice of depots. In a second phase, new solutions are generated by a post-optimization using a path relinking. The method is evaluated on sets of randomly generated instances, and compared to other heuristics and a lower bound. Solutions are obtained in a reasonable amount of time for such a strategic problem. Furthermore, the algorithm is competitive with a metaheuristic published for the case of uncapacitated depots.  相似文献   

6.
周期性车辆路径问题(PVRP)是标准车辆路径问题(VRP)的扩展,PVRP将配送期由单一配送期延伸到T(T>1)期,因此,PVRP需要优化每个配送期的顾客组合和配送路径。由于PVRP是一个内嵌VRP的问题,其比标准VRP问题更加复杂,难于求解。本文采用蚁群算法对PVRP进行求解,并提出采用两种改进措施——多维信息素的运用和基于扫描法的局部优化方法来提高算法的性能。最后,通过9个经典PVRP算例对该算法进行了数据实验,结果表明本文提出的改进蚁群算法求解PVRP问题是可行有效的,同时也表明两种改进措施可以显著提高算法的性能。  相似文献   

7.
We study a selective and periodic inventory routing problem (SPIRP) and develop an Adaptive Large Neighborhood Search (ALNS) algorithm for its solution. The problem concerns a biodiesel production facility collecting used vegetable oil from sources, such as restaurants, catering companies and hotels that produce waste vegetable oil in considerable amounts. The facility reuses the collected waste oil as raw material to produce biodiesel. It has to meet certain raw material requirements either from daily collection, or from its inventory, or by purchasing virgin oil. SPIRP involves decisions about which of the present source nodes to include in the collection program, and which periodic (weekly) routing schedule to repeat over an infinite planning horizon. The objective is to minimize the total collection, inventory and purchasing costs while meeting the raw material requirements and operational constraints. A single-commodity flow-based mixed integer linear programming (MILP) model was proposed for this problem in an earlier study. The model was solved with 25 source nodes on a 7-day cyclic planning horizon. In order to tackle larger instances, we develop an ALNS algorithm that is based on a rich neighborhood structure with 11 distinct moves tailored to this problem. We demonstrate the performance of the ALNS, and compare it with the MILP model on test instances containing up to 100 source nodes.  相似文献   

8.
This paper presents an exact solution framework for solving some variants of the vehicle routing problem (VRP) that can be modeled as set partitioning (SP) problems with additional constraints. The method consists in combining different dual ascent procedures to find a near optimal dual solution of the SP model. Then, a column-and-cut generation algorithm attempts to close the integrality gap left by the dual ascent procedures by adding valid inequalities to the SP formulation. The final dual solution is used to generate a reduced problem containing all optimal integer solutions that is solved by an integer programming solver. In this paper, we describe how this solution framework can be extended to solve different variants of the VRP by tailoring the different bounding procedures to deal with the constraints of the specific variant. We describe how this solution framework has been recently used to derive exact algorithms for a broad class of VRPs such as the capacitated VRP, the VRP with time windows, the pickup and delivery problem with time windows, all types of heterogeneous VRP including the multi depot VRP, and the period VRP. The computational results show that the exact algorithm derived for each of these VRP variants outperforms all other exact methods published so far and can solve several test instances that were previously unsolved.  相似文献   

9.
In this paper, we extend upon current research in the vehicle routing problem whereby labour regulations affect planning horizons, and therefore, profitability. We call this extension the multiperiod vehicle routing problem with profit (mVRPP). The goal is to determine routes for a set of vehicles that maximizes profitability from visited locations, based on the conditions that vehicles can only travel during stipulated working hours within each period in a given planning horizon and that the vehicles are only required to return to the depot at the end of the last period. We propose an effective memetic algorithm with a giant-tour representation to solve the mVRPP. To efficiently evaluate a chromosome, we develop a greedy procedure to partition a given giant-tour into individual routes, and prove that the resultant partition is optimal. We evaluate the effectiveness of our memetic algorithm with extensive experiments based on a set of modified benchmark instances. The results indicate that our approach generates high-quality solutions that are reasonably close to the best known solutions or proven optima, and significantly better than the solutions obtained using heuristics employed by professional schedulers.  相似文献   

10.
Most of the research on integrated inventory and routing problems ignores the case when products are perishable. However, considering the integrated problem with perishable goods is crucial since any discrepancy between the routing and inventory cost can double down the risk of higher obsolescence costs due to the limited shelf-life of the products. In this paper, we consider a distribution problem involving a depot, a set of customers and a homogeneous fleet of capacitated vehicles. Perishable goods are transported from the depot to customers in such a way that out-of-stock situations never occur. The objective is to simultaneously determine the inventory and routing decisions over a given time horizon such that total transportation cost is minimized. We present a new “arc-based formulation” for the problem which is deemed more suitable for our new tabu search based approach for solving the problem. We perform a thorough sensitivity analysis for each of the tabu search parameters individually and use the obtained gaps to fine-tune the parameter values that are used in solving larger sized instances of the problem. We solve different sizes of randomly generated instances and compare the results obtained using the tabu search algorithm to those obtained by solving the problem using CPLEX and a recently published column generation algorithm. Our computational experiments demonstrate that the tabu search algorithm is capable of obtaining a near-optimal solution in less computational time than the time required to solve the problem to optimality using CPLEX, and outperforms the column generation algorithm for solving the “path flow formulation” of the problem in terms of solution quality in almost all of the considered instances.  相似文献   

11.
A variable neighborhood search heuristic for periodic routing problems   总被引:1,自引:0,他引:1  
The aim of this paper is to propose a new heuristic for the Periodic Vehicle Routing Problem (PVRP) without time windows. The PVRP extends the classical Vehicle Routing Problem (VRP) to a planning horizon of several days. Each customer requires a certain number of visits within this time horizon while there is some flexibility on the exact days of the visits. Hence, one has to choose the visit days for each customer and to solve a VRP for each day. Our method is based on Variable Neighborhood Search (VNS). Computational results are presented, that show that our approach is competitive and even outperforms existing solution procedures proposed in the literature. Also considered is the special case of a single vehicle, i.e. the Periodic Traveling Salesman Problem (PTSP). It is shown that slight changes of the proposed VNS procedure is also competitive for the PTSP.  相似文献   

12.
In many distribution systems, the location of the distribution facilities and the routing of the vehicles from these facilities are interdependent. Although this interdependence has been recognized by academics and practitioners alike, attempts to integrate these two decisions have been limited. The location routing problem (LRP), which combines the facility location and the vehicle routing decisions, is NP-hard. Due to the problem complexity, simultaneous solution methods are limited to heuristics. This paper presents a two-phase tabu search architecture for the solution of the LRP. First introduced in this paper, the two-phase approach offers a computationally efficient strategy that integrates facility location and routing decisions. This two-phase architecture makes it possible to search the solution space efficiently, thus producing good solutions without excessive computation. An extensive computational study shows that the TS algorithm achieves significant improvement over a recent effective LRP heuristic.  相似文献   

13.
The open vehicle routing problem (VRP) is an immediate variant of the standard vehicle routing problem where the vehicle need not return to the depot after servicing its last customer. In this paper, we present results on an implementation of the attribute-based hill climber heuristic to the open VRP. The attribute-based hill climber heuristic is a parameter-free variant of the tabu search principle and has shown to be highly effective for the standard vehicle routing problem.  相似文献   

14.
This paper presents a method for solving multi-depot vehicle routing problem (MDVRP). First, a virtual central depot is added to transfer MDVRP to the multi-depot vehicle routing problem with the virtual central depot (V-MDVRP), which is similar to a vehicle routing problem (VRP) with the virtual central depot as the origin. An improved ant colony optimization with coarse-grain parallel strategy, ant-weight strategy and mutation operation, is presented for the V-MDVRP. The computational results for 23 benchmark problems are reported and compared to those of other ant colony optimizations.  相似文献   

15.
A library of local search heuristics for the vehicle routing problem   总被引:1,自引:0,他引:1  
The vehicle routing problem (VRP) is a difficult and well-studied combinatorial optimization problem. Real-world instances of the VRP can contain hundreds and even thousands of customer locations and can involve many complicating constraints, necessitating the use of heuristic methods. We present a software library of local search heuristics that allows one to quickly generate solutions to VRP instances. The code has a logical, object-oriented design and uses efficient data structures to store and modify solutions. The core of the library is the implementation of seven local search operators that share a similar interface and are designed to be extended to handle additional options with minimal code change. The code is well-documented, straightforward to compile, and is freely available online. The code contains several applications that can be used to generate solutions to the capacitated VRP. Computational results indicate that these applications are able to generate solutions that are within about one percent of the best-known solution on benchmark problems.  相似文献   

16.
In this paper, we propose fast heuristics for the vehicle routing problem (VRP) with lexicographic max-order objective. A fixed number of vehicles, which are based at a depot, are to serve customers with known demands. The lexicographic max-order objective is introduced by asking to minimize lexicographically the sorted route lengths. Based on a model for this problem, several approaches are studied and new heuristic solution procedures are discussed resulting in the development of a sequential insertion heuristic and a modified savings algorithm in several variants. Comparisons between the algorithms are performed on instances of the VRP library VRPLIB. Finally, based on the results from the computational experiments, conclusions about the applicability and efficiency of the presented algorithms are drawn.  相似文献   

17.
The location routing problem (LRP) appears as a combination of two difficult problems: the facility location problem (FLP) and the vehicle routing problem (VRP). In this work, we consider a discrete LRP with two levels: a set of potential capacitated distribution centres (DC) and a set of ordered customers. In our problem we intend to determine the set of installed DCs as well as the distribution routes (starting and ending at the DC). The problem is also constrained with capacities on the vehicles. Moreover, there is a homogeneous fleet of vehicles, carrying a single product and each customer is visited just once. As an objective we intend to minimize the routing and location costs.  相似文献   

18.
We present a simulated annealing based algorithm for a variant of the vehicle routing problem (VRP), in which a time window is associated with each client service and some services require simultaneous visits from different vehicles to be accomplished. The problem is called the VRP with time windows and synchronized visits. The algorithm features a set of local improvement methods to deal with various objectives of the problem. Experiments conducted on the benchmark instances from the literature clearly show that our method is fast and outperforms the existing approaches. It produces all known optimal solutions of the benchmark in very short computational times, and improves the best results for the rest of the instances.  相似文献   

19.
This paper considers a real world waste collection problem in which glass, metal, plastics, or paper is brought to certain waste collection points by the citizens of a certain region. The collection of this waste from the collection points is therefore a node routing problem. The waste is delivered to special sites, so called intermediate facilities (IF), that are typically not identical with the vehicle depot. Since most waste collection points need not be visited every day, a planning period of several days has to be considered. In this context three related planning problems are considered. First, the periodic vehicle routing problem with intermediate facilities (PVRP-IF) is considered and an exact problem formulation is proposed. A set of benchmark instances is developed and an efficient hybrid solution method based on variable neighborhood search and dynamic programming is presented. Second, in a real world application the PVRP-IF is modified by permitting the return of partly loaded vehicles to the depots and by considering capacity limits at the IF. An average improvement of 25% in the routing cost is obtained compared to the current solution. Finally, a different but related problem, the so called multi-depot vehicle routing problem with inter-depot routes (MDVRPI) is considered. In this problem class just a single day is considered and the depots can act as an intermediate facility only at the end of a tour. For this problem several instances and benchmark solutions are available. It is shown that the algorithm outperforms all previously published metaheuristics for this problem class and finds the best solutions for all available benchmark instances.  相似文献   

20.
The open vehicle routing problem (OVRP) differs from the classic vehicle routing problem (VRP) because the vehicles either are not required to return to the depot, or they have to return by revisiting the customers assigned to them in the reverse order. Therefore, the vehicle routes are not closed paths but open ones. A heuristic method for solving this new problem, based on a minimum spanning tree with penalties procedure, is presented. Computational results are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号