首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We study, in detail, the supersymmetric quantum mechanics of charge-(1,1)(1,1) monopoles in N=2N=2 supersymmetric Yang–Mills–Higgs theory with gauge group SU(3)SU(3) spontaneously broken to U(1)×U(1)U(1)×U(1). We use the moduli space approximation of the quantised dynamics, which can be expressed in two equivalent formalisms: either one describes quantum states by Dirac spinors on the moduli space, in which case the Hamiltonian is the square of the Dirac operator, or one works with anti-holomorphic forms on the moduli space, in which case the Hamiltonian is the Laplacian acting on forms. We review the derivation of both formalisms, explicitly exhibit their equivalence and derive general expressions for the supercharges as differential operators in both formalisms. We propose a general expression for the total angular momentum operator as a differential operator, and check its commutation relations with the supercharges. Using the known metric structure of the moduli space of charge-(1,1)(1,1) monopoles we show that there are no quantum bound states of such monopoles in the moduli space approximation. We exhibit scattering states and compute corresponding differential cross sections.  相似文献   

2.
We describe how to construct explicit chiral fermion mass terms using Dirac–Kähler (DK) spinors. Classical massive DK spinors are shown to be equivalent to four generations of Dirac spinors with equal mass coupled to a background U(2,2)U(2,2) gauge field. Quantization breaks U(2,2)U(2,2) to U(2)×U(2)U(2)×U(2), lifts mass spectrum degeneracy, and generates a non-trivial CKM mixing.  相似文献   

3.
Motivated by the necessity of discrete ZNZN symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)U(1)?s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1)U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)U(1)?s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1)U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1)U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5)SU(5) GUT models. We find examples of models with Z2Z2 (R-parity) and Z3Z3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.  相似文献   

4.
In minimal non-critical string theory we show that the principal (r,s)(r,s) ZZ brane can be viewed as the basic (1,1)(1,1) ZZ boundary state tensored with the (r,s)(r,s) Cardy boundary state. In this sense there exists only one ZZ boundary state, the basic (1,1)(1,1) boundary state.  相似文献   

5.
We formulate four-dimensional higher spin gauge theories in spacetimes with signature (4−p,p)(4p,p) and non-vanishing cosmological constant. Among them are chiral models in Euclidean (4,0)(4,0) and Kleinian (2,2)(2,2) signature involving half-flat gauge fields. Apart from the maximally symmetric solutions, including de Sitter spacetime, we find: (a) SO(4−p,p)SO(4p,p) invariant deformations, depending on one continuous and infinitely many discrete parameters, including a degenerate metric of rank one; (b) non-maximally symmetric solutions with vanishing Weyl tensors and higher spin gauge fields, that differ from the maximally symmetric solutions in the auxiliary field sector; and (c) solutions of the chiral models furnishing higher spin generalizations of type D gravitational instantons, with an infinite tower of Weyl tensors proportional to totally symmetric products of two principal spinors. These are apparently the first exact 4D solutions with non-vanishing massless higher spin fields.  相似文献   

6.
We study two-dimensional nonlinear sigma models with target spaces being the complex super-Grassmannian manifolds, that is, coset supermanifolds G(m,p|n,q)≅U(m|n)/[U(p|q)⊗U(m−p|n−q)]G(m,p|n,q)U(m|n)/[U(p|q)U(mp|nq)] for 0?p?m0?p?m, 0?q?n0?q?n and 1?p+q1?p+q. The projective superspace CPm−1|nCPm1|n is a special case of p=1p=1, q=0q=0. For the two-dimensional Euclidean base space, a wide class of exact classical solutions (or harmonic maps) are constructed explicitly and elementarily in terms of Gramm–Schmidt orthonormalisation procedure starting from holomorphic bosonic and fermionic supervector input functions. The construction is a generalisation of the non-super-case published more than twenty years ago by one of the present authors.  相似文献   

7.
8.
9.
In this Letter we have investigated the cosmological dynamics of non-locally corrected gravity involving a function of the inverse d'Alembertian of the Ricci scalar, f(−1R)f(−1R). Casting the dynamical equations into local form, we derive the fixed points of the dynamics and demonstrate the existence and stability of a one parameter family of dark energy solutions for a simple choice, f(−1R)∼exp(α−1R)f(−1R)exp(α−1R). The effective EoS parameter is given by, weff=(α−1)/(3α−1)weff=(α1)/(3α1) and the stability of the solutions is guaranteed provided that 1/3<α<2/31/3<α<2/3. For 1/3<α<1/21/3<α<1/2 and 1/2<α<2/31/2<α<2/3, the underlying system exhibits phantom and non-phantom behavior respectively; the de Sitter solution corresponds to α=1/2α=1/2. For a wide range of initial conditions, the system mimics dust like behavior before reaching the stable fixed point. The late time phantom phase is achieved without involving negative kinetic energy fields. A brief discussion on the entropy of de Sitter space in non-local model is included.  相似文献   

10.
11.
12.
13.
We present explicit BPS field configurations representing one non-Abelian monopole with one minimal weight 't Hooft operator insertion. We explore the SO(3)SO(3) and SU(2)SU(2) gauge groups. In the case of SU(2)SU(2) gauge group the minimal 't Hooft operator can be completely screened by the monopole. If the gauge group is SO(3)SO(3), however, such screening is impossible. In the latter case we observe a different effect of the gauge symmetry enhancement in the vicinity of the 't Hooft operator.  相似文献   

14.
Hadro-charmonium     
We argue that relatively compact charmonium states, J/ψJ/ψ, ψ(2S)ψ(2S), χcχc, can very likely be bound inside light hadronic matter, in particular inside higher resonances made from light quarks and/or gluons. The charmonium state in such binding essentially retains its properties, so that the bound system decays into light mesons and the particular charmonium resonance. Thus such bound states of a new type, which we call hadro-charmonium, may explain the properties of some of the recently observed resonant peaks, in particular of Y(4.26)Y(4.26), Y(4.32–4.36)Y(4.324.36), Y(4.66)Y(4.66), and Z(4.43)Z(4.43). We discuss further possible implications of the suggested picture for the observed states and existence of other states of hadro-charmonium and hadro-bottomonium.  相似文献   

15.
We investigate gauge-Higgs unification models in eight-dimensional spacetime where extra-dimensional space has the structure of a four-dimensional compact coset space. The combinations of the coset space and the gauge group in the eight-dimensional spacetime of such models are listed. After the dimensional reduction of the coset space, we identified SO(10)SO(10), SO(10)×U(1)SO(10)×U(1) and SO(10)×U(1)×U(1)SO(10)×U(1)×U(1) as the possible gauge groups in the four-dimensional theory that can accomodate the Standard Model and thus is phenomenologically promising. Representations for fermions and scalars for these gauge groups are tabulated.  相似文献   

16.
17.
Lattice artifacts in the 2d O(n) non-linear σ  -model are expected to be of the form O(a2)O(a2), and hence it was (when first observed) disturbing that some quantities in the O(3)O(3) model with various actions show parametrically stronger cutoff dependence, apparently O(a)O(a), up to very large correlation lengths. In a previous letter Balog et al. (2009) [1] we described the solution to this puzzle. Based on the conventional framework of Symanzik's effective action, we showed that there are logarithmic corrections to the O(a2)O(a2) artifacts which are especially large (ln3aln3a) for n=3n=3 and that such artifacts are consistent with the data. In this paper we supply the technical details of this computation. Results of Monte Carlo simulations using various lattice actions for O(3)O(3) and O(4)O(4) are also presented.  相似文献   

18.
19.
In this paper we continue our study of the dual SL(2,C)SL(2,C) symmetry of the BFKL equation, analogous to the dual conformal symmetry of N=4N=4 super-Yang–Mills. We find that the ordinary and dual SL(2,C)SL(2,C) symmetries do not generate a Yangian, in contrast to the ordinary and dual conformal symmetries in the four-dimensional gauge theory. The algebraic structure is still reminiscent of that of N=4N=4 SYM, however, and one can extract a generator from the dual SL(2,C)SL(2,C) close to the bi-local form associated with Yangian algebras. We also discuss the issue of whether the dual SL(2,C)SL(2,C) symmetry, which in its original form is broken by IR effects, is broken in a controlled way, similar to the way the dual conformal symmetry of N=4N=4 satisfies an anomalous Ward identity. At least for the lowest orders it seems possible to recover the dual SL(2,C)SL(2,C) by deforming its representation, keeping open the possibility that it is an exact symmetry of BFKL. Independently of a possible relation to N=4N=4 scattering amplitudes, this opens an avenue for explaining the integrability of BFKL in terms of two finite-dimensional subalgebras.  相似文献   

20.
We study integrable cases of pairing BCS hamiltonians containing several types of fermions. We prove that there exist three classes of such integrable models associated with classical rational r  -matrices and Lie algebras gl(2m)gl(2m), sp(2m)sp(2m) and so(2m)so(2m) correspondingly. We diagonalize the constructed hamiltonians by means of the algebraic Bethe ansatz. In the partial case of two types of fermions (m=2m=2) the obtained models may be interpreted as N=ZN=Z proton–neutron integrable models. In particular, in the case of sp(4)sp(4) we recover the famous integrable proton–neutron model of Richardson.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号