首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bogomolny–Prasad–Sommerfield (BPS) vortices in U(N)U(N) gauge theories have two layers corresponding to non-Abelian and Abelian fluxes, whose widths depend nontrivially on the ratio of U(1)U(1) and SU(N)SU(N) gauge couplings. We find numerically and analytically that the widths differ significantly from the Compton lengths of lightest massive particles with the appropriate quantum number.  相似文献   

2.
In this Letter, we consider lattice versions of the decomposition of the Yang–Mills field a la Cho–Faddeev–Niemi, which was extended by Kondo, Shinohara and Murakami in the continuum formulation. For the SU(N)SU(N) gauge group, we propose a set of defining equations for specifying the decomposition of the gauge link variable and solve them exactly without using the ansatz adopted in the previous studies for SU(2)SU(2) and SU(3)SU(3). As a result, we obtain the general form of the decomposition for SU(N)SU(N) gauge link variables and confirm the previous results obtained for SU(2)SU(2) and SU(3)SU(3).  相似文献   

3.
We present explicit BPS field configurations representing one non-Abelian monopole with one minimal weight 't Hooft operator insertion. We explore the SO(3)SO(3) and SU(2)SU(2) gauge groups. In the case of SU(2)SU(2) gauge group the minimal 't Hooft operator can be completely screened by the monopole. If the gauge group is SO(3)SO(3), however, such screening is impossible. In the latter case we observe a different effect of the gauge symmetry enhancement in the vicinity of the 't Hooft operator.  相似文献   

4.
We study a matrix model obtained by dimensionally reducing Chern–Simons theory on S3S3. We find that the matrix integration is decomposed into sectors classified by the representation of SU(2)SU(2). We show that the N  -block sectors reproduce SU(N)SU(N) Yang–Mills theory on S2S2 as the matrix size goes to infinity.  相似文献   

5.
It is shown that four-dimensional N=1N=1 supersymmetric QCD with massive flavors in the fundamental representation of the gauge group can be realized in the hidden sector of E8×E8E8×E8 heterotic string vacua. The number of flavors can be chosen to lie in the range of validity of the free-magnetic dual, using which one can demonstrate the existence of long-lived meta-stable non-supersymmetric vacua. This is shown explicitly for the gauge group Spin(10)Spin(10), but the methods are applicable to Spin(Nc)Spin(Nc), SU(Nc)SU(Nc) and Sp(Nc)Sp(Nc) for a wide range of color index NcNc. Hidden sectors of this type can potentially be used as a mechanism to break supersymmetry within the context of heterotic M-theory.  相似文献   

6.
7.
We construct non-Abelian global string solutions in the UL(N)×UR(N)U(N)L×U(N)R linear sigma model. These strings are the most fundamental objects which are expected to form during the chiral phase transitions, because the Abelian ηη string is marginally decomposed into N   of them. We point out Nambu–Goldstone modes of CPN−1CPN1 for breaking of SUV(N)SU(N)V arise around a non-Abelian vortex.  相似文献   

8.
Magnetic properties of the bond and crystal field dilution spin-3/2 Blume–Capel model in an external magnetic field (h)(h) on simple cubic lattice are studied by using the effective field theory. In the m−TmT plane, the degeneracy of the magnetization (m)(m) is affected by the concentration of bond or crystal field dilution at low temperature (T)(T). The magnetization curves can appear to fluctuate in certain regions of negative crystal field. In the m−hmh plane, the initial magnetization curve has an irregular behavior due to the introduction of bond dilution. The crystal field dilution has the influence on the process of magnetic domain displacement. In the χ−hχh plane, there exists one susceptibility (χ)(χ) shoulder and one step for different negative crystal field. The susceptibility curve takes on the feature of multi-peaks distribution under bond and crystal field dilution conditions.  相似文献   

9.
10.
We develop an analytical approach for studying lattice gauge theories within the plaquette representation where the plaquette matrices play the role of the fundamental degrees of freedom. We start from the original Batrouni formulation and show how it can be modified in such a way that each non-Abelian Bianchi identity contains only two connectors instead of four. In addition, we include dynamical fermions in the plaquette formulation. Using this representation we construct the low-temperature perturbative expansion for U(1)U(1) and SU(N)SU(N) models and discuss its uniformity in the volume. The final aim of this study is to give a mathematical background for working with non-Abelian models in the plaquette formulation.  相似文献   

11.
We construct a stable Skyrmion in 3+13+1 dimensions as a sine-Gordon kink inside a domain wall within a domain wall in an O(4)O(4) sigma model with hierarchical mass terms without the Skyrme term. We also find that higher dimensional Skyrmions can stably exist with a help of non-Abelian domain walls in an O(N)O(N) model with hierarchical mass terms without a Skyrme term, which leads to a matryoshka structure of Skyrmions.  相似文献   

12.
We consider products of two 2-manifolds such as S2×S2S2×S2, embedded in Euclidean space and show that the corresponding 4-volume preserving diffeomorphism algebra can be approximated by a tensor product SU(N)⊗SU(N)SU(N)SU(N) i.e. functions on a manifold are approximated by the Kronecker product of two SU(N)SU(N) matrices.  相似文献   

13.
Hadro-charmonium     
We argue that relatively compact charmonium states, J/ψJ/ψ, ψ(2S)ψ(2S), χcχc, can very likely be bound inside light hadronic matter, in particular inside higher resonances made from light quarks and/or gluons. The charmonium state in such binding essentially retains its properties, so that the bound system decays into light mesons and the particular charmonium resonance. Thus such bound states of a new type, which we call hadro-charmonium, may explain the properties of some of the recently observed resonant peaks, in particular of Y(4.26)Y(4.26), Y(4.32–4.36)Y(4.324.36), Y(4.66)Y(4.66), and Z(4.43)Z(4.43). We discuss further possible implications of the suggested picture for the observed states and existence of other states of hadro-charmonium and hadro-bottomonium.  相似文献   

14.
15.
In this Letter we compute the nonplanar one-loop anomalous dimension of restricted Schur polynomials that have a bare dimension of O(N)O(N). This is achieved by mapping the restricted Schur polynomials into states of a specific U(p)U(p) irreducible representation. In this way the dilatation operator is mapped into a u(p)u(p) valued operator and, as a result, can easily be diagonalized. The resulting spectrum is reproduced by a model of springs between masses.  相似文献   

16.
Beisert et al. have identified an integrable SU(2,2)SU(2,2) quantum spin chain which gives the one-loop anomalous dimensions of certain operators in large NcNc QCD. We derive a set of nonlinear integral equations (NLIEs) for this model, and compute the scattering matrix of the various (in particular, magnon) excitations.  相似文献   

17.
We study, in detail, the supersymmetric quantum mechanics of charge-(1,1)(1,1) monopoles in N=2N=2 supersymmetric Yang–Mills–Higgs theory with gauge group SU(3)SU(3) spontaneously broken to U(1)×U(1)U(1)×U(1). We use the moduli space approximation of the quantised dynamics, which can be expressed in two equivalent formalisms: either one describes quantum states by Dirac spinors on the moduli space, in which case the Hamiltonian is the square of the Dirac operator, or one works with anti-holomorphic forms on the moduli space, in which case the Hamiltonian is the Laplacian acting on forms. We review the derivation of both formalisms, explicitly exhibit their equivalence and derive general expressions for the supercharges as differential operators in both formalisms. We propose a general expression for the total angular momentum operator as a differential operator, and check its commutation relations with the supercharges. Using the known metric structure of the moduli space of charge-(1,1)(1,1) monopoles we show that there are no quantum bound states of such monopoles in the moduli space approximation. We exhibit scattering states and compute corresponding differential cross sections.  相似文献   

18.
19.
The grand partition functions Z(T,B)Z(T,B) of the Ising model on L×LL×L triangular lattices with fully periodic boundary conditions, as a function of temperature T and magnetic field B  , are evaluated exactly for L<12L<12 (using microcanonical transfer matrix) and approximately for L?12L?12 (using Wang–Landau Monte Carlo algorithm). From Z(T,B)Z(T,B), the distributions of the partition function zeros of the triangular-lattice Ising model in the complex temperature plane for real B≠0B0 are obtained and discussed for the first time. The critical points aN(x)aN(x) and the thermal scaling exponents yt(x)yt(x) of the triangular-lattice Ising antiferromagnet, for various values of x=e−2βBx=e2βB, are estimated using the partition function zeros.  相似文献   

20.
More than four decades ago, March and Murray gave a perturbation theory of the single-particle(s) Dirac density matrix γs(r,r)γs(r,r) to all orders in a given one-body potential energy V(r)V(r). However, for density functional theory in orbital-free form, one requires the functional γs[ρ]γs[ρ] where ρ(r)ρ(r) is the ground-state electron density. Therefore, in the present study, a first-order non-linear differential equation is proposed for γsγs in terms of ρ(r)ρ(r) and ∇ρ(r)ρ(r), plus the single-particle kinetic energy. Since this latter quantity is itself known to be a functional of ρ  , the existence of such an equation for γsγs would be a significant step along the road to determining the desired functional γs[ρ]γs[ρ]. As yet, we have succeeded in giving a rigorous proof of the proposed differential equation for γs(r,r)γs(r,r) only for one- and two-level molecules. If it is subsequently proved for an arbitrary number of levels, which we believe should be possible, it would then allow γsγs to be calculated for molecules of biological interest, from experimentally measured ground-state densities ρ(r)ρ(r), as the approach is entirely orbital-free.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号