首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analyze the noncommutative two-dimensional Wess–Zumino–Witten model and its properties under Seiberg–Witten transformations in the operator formulation. We prove that the model is invariant under such transformations even for the noncritical (non-chiral) case, in which the coefficients of the kinetic and Wess–Zumino terms are not related. The pure Wess–Zumino term represents a singular case in which this transformation fails to reach a commutative limit. We also discuss potential implications of this result for bosonization.  相似文献   

2.
3.
In a recent study of Landau-Ginzburg model of string field theory by Gaiotto, Moore and Witten, there appears a type of perturbed Cauchy-Riemann equation, i.e. the ζ -instanton equation. Solutions of ζ -instanton equation have degenerate asymptotics. This degeneracy is a severe restriction for obtaining the Fredholm property and constructing relevant homology theory. In this article, we study the Fredholm property of a sort of differential operators with degenerate asymptotics. As an application, we verify certain Fredholm property of the linearized operator of ζ -instanton equations.  相似文献   

4.
We show that the non-commutative Yang–Mills field forms an irreducible representation of the (undeformed) Lie algebra of rigid translations, rotations and dilatations. The non-commutative Yang–Mills action is invariant under combined conformal transformations of the Yang–Mills field and of the non-commutativity parameter . The Seiberg–Witten differential equation results from a covariant splitting of the combined conformal transformations and can be computed as the missing piece to complete a covariant conformal transformation to an invariance of the action. Received: 6 November 2001 / Published online: 5 April 2002  相似文献   

5.
A covariant formalism for Moyal deformations of gauge theory and differential equations which determine Seiberg–Witten maps is presented. Replacing the ordinary product of functions by the noncommutative Moyal product, noncommutative versions of integrable models can be constructed. We explore how a Seiberg–Witten map acts in such a framework. As a specific example, we consider a noncommutative extension of the principal chiral model.  相似文献   

6.
We consider noncommutative gauge theory defined by means of Seiberg–Witten maps for an arbitrary semisimple gauge group. We compute the one-loop UV divergent matter contributions to the gauge field effective action to all orders in the noncommutative parameters θ. We do this for Dirac fermions and complex scalars carrying arbitrary representations of the gauge group. We use path-integral methods in the framework of dimensional regularisation and consider arbitrary invertible Seiberg–Witten maps that are linear in the matter fields. Surprisingly, it turns out that the UV divergent parts of the matter contributions are proportional to the noncommutative Yang–Mills action where traces are taken over the representation of the matter fields; this result supports the need to include such traces in the classical action of the gauge sector of the noncommutative theory.  相似文献   

7.
8.
《Physics letters. [Part B]》1986,172(2):216-222
A general construction of null fields is given through the use of a vertex operator representation of conformal quantum fields. Singular vertex operators are constructed as possessing the conformal properties of a degenerate primary field. A systematic approach to obtaining the partial differential equations for correlation functions is suggested.  相似文献   

9.
We construct a natural L2L2-metric on the perturbed Seiberg–Witten moduli spaces Mμ+Mμ+ of a compact 4-manifold MM, and we study the resulting Riemannian geometry of Mμ+Mμ+. We derive a formula which expresses the sectional curvature of Mμ+Mμ+ in terms of the Green operators of the deformation complex of the Seiberg–Witten equations. In case MM is simply connected, we construct a Riemannian metric on the Seiberg–Witten principal U(1)U(1) bundle P→Mμ+PMμ+ such that the bundle projection becomes a Riemannian submersion. On a Kähler surface MM, the L2L2-metric on Mμ+Mμ+ coincides with the natural Kähler metric on moduli spaces of vortices.  相似文献   

10.
The  tt–JJ  model is studied using a novel and rigorous mapping of the Gutzwiller projected electrons, in terms of canonical electrons. The mapping has considerable similarity to the Dyson–Maleev transformation relating spin operators to canonical Bosons. This representation gives rise to a non Hermitian quantum theory, characterized by minimal redundancies. A path integral representation of the canonical theory is given. Using it, the salient results of the extremely correlated Fermi liquid (ECFL) theory, including the previously found Schwinger equations of motion, are easily rederived. Further, a transparent physical interpretation of the previously introduced auxiliary Greens function and the ‘caparison factor’, is obtained.  相似文献   

11.
We present an investigation of the massless, two-dimentional, interacting field theories. Their basic property is their invariance under an infinite-dimensional group of conformal (analytic) transformations. It is shown that the local fields forming the operator algebra can be classified according to the irreducible representations of Virasoro algebra, and that the correlation functions are built up of the “conformal blocks” which are completely determined by the conformal invariance. Exactly solvable conformal theories associated with the degenerate representations are analyzed. In these theories the anomalous dimensions are known exactly and the correlation functions satisfy the systems of linear differential equations.  相似文献   

12.
13.
A generalization of Selberg’s beta integral involving Schur polynomials associated with partitions with entries not greater than 2 is explicitly computed. The complex version of this integral is given after proving a general statement concerning the complex extensions of Selberg–Schur integrals. All these results have interesting applications in both mathematics and physics, particularly in conformal field theory, because the conformal blocks for the Wess–Zumino–Novikov–Witten model with underlying affine structure can be obtained by analytical continuation of these integrals.   相似文献   

14.
We consider massless Quantum Electrodynamics in the momentum scheme and carry forward an approach based on Dyson–Schwinger equations to approximate both the ββ-function and the renormalized photon self-energy (Yeats, 2011). Starting from the Callan–Symanzik equation, we derive a renormalization group (RG) recursion identity which implies a non-linear ODE for the anomalous dimension and extract a sufficient but not necessary criterion for the existence of a Landau pole. This criterion implies a necessary condition for QED to have no such pole. Solving the differential equation exactly for a toy model case, we integrate the corresponding RG equation for the running coupling and find that even though the ββ-function entails a Landau pole it exhibits a flat contribution capable of decreasing its growth, in other cases possibly to the extent that such a pole is avoided altogether. Finally, by applying the recursion identity, we compute the photon propagator and investigate the effect of flat contributions on both spacelike and timelike photons.  相似文献   

15.
Fujikawa's method is employed to compute at first order in the noncommutative parameter the U(1)A anomaly for noncommutative SU(N). We consider the most general Seiberg–Witten map which commutes with hermiticity and complex conjugation and a noncommutative matrix parameter, θμν, which is of “magnetic” type. Our results for SU(N) can be readily generalized to cover the case of general nonsemisimple gauge groups when the symmetric Seiberg–Witten map is used. Connection with the Atiyah–Singer index theorem is also made.  相似文献   

16.
In this paper, we unify advection and diffusion into a single hyperbolic system by extending the first-order system approach introduced for the diffusion equation [J. Comput. Phys., 227 (2007) 315–352] to the advection–diffusion equation. Specifically, we construct a unified hyperbolic advection–diffusion system by expressing the diffusion term as a first-order hyperbolic system and simply adding the advection term to it. Naturally then, we develop upwind schemes for this entire   system; there is thus no need to develop two different schemes, i.e., advection and diffusion schemes. We show that numerical schemes constructed in this way can be automatically uniformly accurate, allow O(h)O(h) time step, and compute the solution gradients (viscous stresses/heat fluxes for the Navier–Stokes equations) simultaneously to the same order of accuracy as the main variable, for all Reynolds numbers. We present numerical results for boundary-layer type problems on non-uniform grids in one dimension and irregular triangular grids in two dimensions to demonstrate various remarkable advantages of the proposed approach. In particular, we show that the schemes solving the first-order advection–diffusion system give a tremendous speed-up in CPU time over traditional scalar schemes despite the additional cost of carrying extra variables and solving equations for them. We conclude the paper with discussions on further developments to come.  相似文献   

17.
Algebraic aspects of the computation of partition functions for quantum gravity and black holes in AdS3AdS3 are discussed. We compute the sub-leading quantum corrections to the Bekenstein–Hawking entropy. It is shown that the quantum corrections to the classical result can be included systematically by making use of the comparison with conformal field theory partition functions, via the AdS3/CFT2AdS3/CFT2 correspondence. This leads to a better understanding of the role of modular and spectral functions, from the point of view of the representation theory of infinite-dimensional Lie algebras. Besides, the sum of known quantum contributions to the partition function can be presented in a closed form, involving the Patterson–Selberg spectral function. These contributions can be reproduced in a holomorphically factorized theory whose partition functions are associated with the formal characters of the Virasoro modules. We propose a spectral function formulation for quantum corrections to the elliptic genus from supergravity states.  相似文献   

18.
We investigate the structure of singular Calabi–Yau varieties in moduli spaces that contain a Brieskorn–Pham point. Our main tool is a construction of families of deformed motives over the parameter space. We analyze these motives for general fibers and explicitly compute the LL-series for singular fibers for several families. We find that the resulting motivic LL-functions agree with the LL-series of modular forms whose weight depends both on the rank of the motive and the degree of the degeneration of the variety. Surprisingly, these motivic LL-functions are identical in several cases to LL-series derived from weighted Fermat hypersurfaces. This shows that singular Calabi–Yau spaces of non-conifold type can admit a string worldsheet interpretation, much like rational theories, and that the corresponding irrational conformal field theories inherit information from the Gepner conformal field theory of the weighted Fermat fiber of the family. These results suggest that phase transitions via non-conifold configurations are physically plausible. In the case of severe degenerations we find a dimensional transmutation of the motives. This suggests further that singular configurations with non-conifold singularities may facilitate transitions between Calabi–Yau varieties of different dimensions.  相似文献   

19.
《Nuclear Physics B》2004,681(3):295-323
The Jordanian deformation of sl(2) bialgebra structure is studied in view of physical applications to breaking of conformal symmetry in the high energy asymptotics of scattering. Representations are formulated in terms of polynomials, generators in terms of differential operators. The deformed R operator with generic representations is analyzed in spectral and integral forms.  相似文献   

20.
Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T–QTQ relation and the Bethe ansatz equations are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号