首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The urban public transport system is portrayed as a special commodity market where passenger is consumer, transit operator is producer and the special goods is the service for passenger’s trip. The generalized Nash equilibrium game is applied to describe how passengers adjust their route choices and trip modes. We present a market equilibrium model for urban public transport system as a series of mathematical programmings and equations, which is to describe both the competitions among different transit operators and the interactive influences among passengers. The proposed model can simultaneously predict how passengers choose their optimal routes and trip modes. An algorithm is designed to obtain the equilibrium solution. Finally, a simple numerical example is given and some conclusions are drawn.  相似文献   

2.
This paper presents a metaheuristic method for optimizing transit networks, including route network design, vehicle headway, and timetable assignment. Given information on transit demand, the street network of the transit service area, and total fleet size, the goal is to identify a transit network that minimizes a passenger cost function. Transit network optimization is a complex combinatorial problem due to huge search spaces of route network, vehicle headways, and timetables. The methodology described in this paper includes a representation of transit network variable search spaces (route network, headway, and timetable); a user cost function based on passenger random arrival times, route network, vehicle headways, and timetables; and a metaheuristic search scheme that combines simulated annealing, tabu, and greedy search methods. This methodology has been tested with problems reported in the existing literature, and applied to a large-scale realistic network optimization problem. The results show that the methodology is capable of producing improved solutions to large-scale transit network design problems in reasonable amounts of time and computing resources.  相似文献   

3.
In real life distribution of goods, relatively long service times may make it difficult to serve all requests during regular working hours. These difficulties are even greater if the beginning of the service in each demand site must occur within a time window and violations of routing time restrictions are particularly undesirable. We address this situation by considering a variant of the vehicle routing problem with time windows for which, besides routing and scheduling decisions, a number of extra deliverymen can be assigned to each route in order to reduce service times. This problem appears, for example, in the distribution of beverage and tobacco in highly dense Brazilian urban areas. We present a mathematical programming formulation for the problem, as well as a tabu search and an ant colony optimization heuristics for obtaining minimum cost routes. The performance of the model and the heuristic approaches are evaluated using instances generated from a set of classic examples from the literature.  相似文献   

4.
This paper addresses the problem of selecting primary and secondary routes for every pair of communicating nodes in a backbone communication network. A primary route and a secondary route constitute a route pair. A route pair is selected from among all possible route pairs in the network. The secondary route is link-disjoint from the primary route. A nonlinear integer mathematical programming model to minimize the mean delay faced by messages is developed. The model captures situations where a single link failure would divert traffic to the appropriate secondary routes. A solution procedure based on a relaxation of the problem is presented. Computational results indicate that the procedure is very effective.  相似文献   

5.
We describe a solution procedure for a capacitated arc routing problem with refill points and multiple loads. This problem stems from the road network marking in Quebec, Canada. Two different types of vehicles are used: the first type (called servicing vehicle—SV) with a finite capacity to service the arcs and the other (called refilling vehicle—RV) to refill the SV vehicle.The RV can deliver multiple loads, which means that it meets the SV several times before returning to the depot. The problem consists of simultaneously determining the vehicle routes that minimize the total cost of the two vehicles.We present an integer formulation and a route first-cluster second heuristic procedure. Computational results are provided.  相似文献   

6.
This paper presents a model for evaluation of transport policies in multimodal networks with road and parking capacity constraints. The proposed model simultaneously considers choices of travelers on route, parking location and mode between auto and transit. In the proposed model, it is assumed that auto drivers make a simultaneous route and parking location choice in a user equilibrium manner, and the modal split between auto and transit follows a multinomial logit formulation. A mathematical programming model with capacity constraints on road link and parking facilities is proposed that generates optimality conditions equivalent to the requirements for multimodal network equilibrium. An augmented Lagrangian dual algorithm embedded by partial linearization approach is developed to solve the proposed model. Numerical results on two example networks are presented to illustrate the proposed methodology. The results show that the service level of transit, parking charges, road link and parking capacities, and addition of a new parking location may bring significant impacts on travelers’ behavior and network performance. In addition, transport policies may result in paradoxical phenomenon.  相似文献   

7.
An analytical model for the determination of the number and locations of time points as well as the amount of slack times in transit schedule design is developed. The model considers a bus route with a special passenger demand pattern in which all boarding passengers coordinate their arrivals at each stop in such a way that they never miss their intended bus, and therefore designing the schedule separately a single run at a time, becomes possible. The model employs the dynamic programming method to deal with the trade-offs among various cost components associated with the schedule quantitatively, and yet is flexible enough to incorporate the existing rules of thumb as well as transit operators' policies. Numerical examples that illustrate the applications of the model are given. The model, although not quite applicable to bus routes with general passenger demand patterns, is useful in the analysis of the contributing factors to the design of an economical, reliable, and operational transit schedule, and is likely to be adaptable for more realistic cases.  相似文献   

8.
The vehicle routing problem with multiple use of vehicles is a variant of the classical vehicle routing problem. It arises when each vehicle performs several routes during the workday due to strict time limits on route duration (e.g., when perishable goods are transported). The routes are defined over customers with a revenue, a demand and a time window. Given a fixed-size fleet of vehicles, it might not be possible to serve all customers. Thus, the customers must be chosen based on their associated revenue minus the traveling cost to reach them. We introduce a branch-and-price approach to address this problem where lower bounds are computed by solving the linear programming relaxation of a set packing formulation, using column generation. The pricing subproblems are elementary shortest path problems with resource constraints. Computational results are reported on euclidean problems derived from well-known benchmark instances for the vehicle routing problem with time windows.  相似文献   

9.
一种改进的公交网络最优路径算法   总被引:1,自引:0,他引:1  
通过对公交网络模型进行分析,考虑公交线路票价变化,按照出行时间最短同时保证换乘次数较少的原则,对现有解决公交网络最短路问题的算法进行改进.应用了将公交线路抽象为顶点,建立邻接矩阵的方法处理换乘问题.通过实际问题计算验证了算法的有效性.  相似文献   

10.
In this paper, we consider the open vehicle routing problem with time windows (OVRPTW). The OVRPTW seeks to find a set of non-depot returning vehicle routes, for a fleet of capacitated vehicles, to satisfy customers’ requirements, within fixed time intervals that represent the earliest and latest times during the day that customers’ service can take place. We formulate a comprehensive mathematical model to capture all aspects of the problem, and incorporate in the model all critical practical concerns. The model is solved using a greedy look-ahead route construction heuristic algorithm, which utilizes time windows related information via composite customer selection and route-insertion criteria. These criteria exploit the interrelationships between customers, introduced by time windows, that dictate the sequence in which vehicles must visit customers. Computational results on a set of benchmark problems from the literature provide very good results and indicate the applicability of the methodology in real-life routing applications.  相似文献   

11.
Capacity Constrained Transit Assignment with Common Lines   总被引:1,自引:0,他引:1  
This paper proposes the use of absorbing Markov chains to solve the capacity constrained transit network loading problem taking common lines into account. The approach handles congested transit networks, where some passengers will not be able to board because of the absence of sufficient space. The model also handles the common lines problem, where choice of route depends on frequency of arrivals. The mathematical formulation of the problem is presented together with a numerical example. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Due to an increasing demand for public transportation and intra-urban mobility, an efficient organization of public transportation has gained significant importance in the last decades. In this paper we present a model formulation for the bus rapid transit route design problem, given a fixed number of routes to be offered. The problem can be tackled using a decomposition strategy, where route design and the determination of frequencies and passenger flows will be dealt with separately. We propose a hybrid metaheuristic based on a combination of Large Neighborhood Search (LNS) and Linear Programming (LP). The algorithm as such is iterative. Decision upon the design of routes will be handled using LNS. The resulting passenger flows and frequencies will be determined by solving a LP. The solution obtained may then be used to guide the exploration of new route designs in the following iterations within LNS. Several problem specific operators are suggested and have been tested. The proposed algorithm compares extremely favorable and is able to obtain high quality solutions within short computational times.  相似文献   

13.
Cost optimal allocation of rail passenger lines   总被引:1,自引:0,他引:1  
We consider the problem of cost optimal railway line allocation for passenger trains for the Dutch railway system. At present, the allocation of passenger lines by Dutch Railways is based on maximizing the number of direct travelers. This paper develops an alternative approach that takes operating costs into account. A mathematical programming model is developed which minimizes the operating costs subject to service constraints and capacity requirements. The model optimizes on lines, line types, routes, frequencies and train lengths. First, the line allocation model is formulated as an integer nonlinear programming model. This model is transformed into an integer linear programming model with binary decision variables. An algorithm is presented which solves the problem to optimality. The algorithm is based upon constraint satisfaction and a Branch and Bound procedure. The algorithm is applied to a subnetwork of the Dutch railway system for which it shows a substantial cost reduction. Further application and extension seem promising.  相似文献   

14.
This paper studies the problem of assigning capacities to links in a backbone communication network and determining the routes used by messages for all communicating node pairs in the network under time varying traffic conditions. The best routes are to be chosen from among all possible routes in the network. Tradeoffs between link costs and response time to users are achieved by specifying an upper limit on the average link queueing delay in the network. The goal is to minimize total link fixed and variable costs. The topology of the network and the end-to-end traffic requirements during the different busy-hours are assumed to be known. The problem is formulated as a mathematical programming model. An efficient solution procedure based on a Lagrangian relaxation of the problem is developed. The results of extensive computational experiments across a variety of networks are reported. These results indicate that the solution procedure is effective for a wide range of traffic loads and cost structures.  相似文献   

15.
Hub location problems involve locating hub facilities and allocating demand nodes to hubs in order to provide service between origin–destination pairs. In this study, we focus on cargo applications of the hub location problem. Through observations from the Turkish cargo sector, we propose a new mathematical model for the hub location problem that relaxes the complete hub network assumption. Our model minimizes the cost of establishing hubs and hub links, while designing a network that services each origin–destination pair within a time bound. We formulate a single-allocation hub covering model that permits visiting at most three hubs on a route. The model is then applied to the realistic instances of the Turkish network and to the Civil Aeronautics Board data set.  相似文献   

16.
We address an integrated logistic system where decisions on location of depot, vehicle routing and assignment of routes to vehicles are considered simultaneously. Total cost and workload balance are common criteria influencing decision-making. Literature on location-routing problems addressed the location and vehicle routing decisions with a common assumption of assigning one route to one vehicle. However, the cost of acquiring vehicles (and crew) is often more significant than the routing cost. This notion of assigning several routes to a vehicle during the routing procedure is explored in our integrated model. We apply metaheuristics of tabu search and simulated annealing on real data and simulated data, to compare their performances under two versions: simultaneous or sequential routes assignment to vehicles. A new statistical procedure is proposed to compare two algorithms on the strength of their multi-objective solutions. Results show that the simultaneous versions have advantage over the sequential versions in problems where routes are capacity-constrained, but not in the time dimension. The simultaneous versions are also more effective in generating non-dominated solutions than the sequential versions.  相似文献   

17.
This paper considers a vehicle routing problem where each vehicle performs delivery operations over multiple routes during its workday and where new customer requests occur dynamically. The proposed methodology for addressing the problem is based on an adaptive large neighborhood search heuristic, previously developed for the static version of the problem. In the dynamic case, multiple possible scenarios for the occurrence of future requests are considered to decide about the opportunity to include a new request into the current solution. It is worth noting that the real-time decision is about the acceptance of the new request, not about its service which can only take place in some future routes (a delivery route being closed as soon as a vehicle departs from the depot). In the computational results, a comparison is provided with a myopic approach which does not consider scenarios of future requests.  相似文献   

18.
The maritime oil tanker routing and scheduling problem is known to the literature since before 1950. In the presented problem, oil tankers transport crude oil from supply points to demand locations around the globe. The objective is to find ship routes, load sizes, as well as port arrival and departure times, in a way that minimizes transportation costs. We introduce a path flow model where paths are ship routes. Continuous variables distribute the cargo between the different routes. Multiple products are transported by a heterogeneous fleet of tankers. Pickup and delivery requirements are not paired to cargos beforehand and arbitrary split of amounts is allowed. Small realistic test instances can be solved with route pre-generation for this model. The results indicate possible simplifications and stimulate further research.  相似文献   

19.
Contract carriers in the trucking industry are known to offer shippers a per mile rate that decreases stepwise as the shipper’s route lengthens, with a mileage band designated for each rate. While the use of quantity-based pricing discounts in supply chains has been well studied, there has been no research on how shippers should route under such a pricing scheme or how carriers should set such bands. In this paper, we provide methods for both. Route construction is complicated by the fact that the per mile rate cannot be determined until after the route has been created. With this consideration, we develop a model of this problem and then an algorithm for solving it that assists the shipper in constructing the lowest cost route. It is beneficial for the shipper to extend the length of certain routes to incur a lower per mile cost, and we find that most of these routes can be constructed to equal any mileage required to receive the lower rate. As an extended route generates unnecessary expense and energy use for the carrier, theoretical and analytical insights provide guidelines for a carrier to use in developing better mileage bands. These guidelines assist a carrier in constructing bands that maximize profit and minimize the cost associated with a shipper extending a route.  相似文献   

20.
This paper considers the resource planning problem of a utility company that provides preventive maintenance services to a set of customers using a fleet of depot-based mobile gangs. The problem is to determine the boundaries of the geographic areas served by each depot, the list of customers visited each day and the routes followed by the gangs. The objective is to provide improved customer service at minimum operating cost subject to constraints on frequency of visits, service time requirements, customer preferences for visiting on particular days and other routing constraints. The problem is solved as a Multi-Depot Period Vehicle Routing Problem (MDPVRP). The computational implementation of the complete planning model is described with reference to a pilot study and results are presented. The solution algorithm is used to construct cost-service trade-off curves for all depots so that management can evaluate the impact of different customer service levels on total routing costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号