首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose a multi-period portfolio optimization model with stochastic cash flows. Under the mean–variance preference, we derive the pre-commitment and time-consistent investment strategies by applying the embedding scheme and backward induction approach, respectively. We show that the time-consistent strategy is identical to the optimal open-loop strategy. Also, under the exponential utility preference, we develop the optimal strategy for multi-period investment, which is time-consistent. We show that the above two time-consistent strategies are equivalent in some cases. We compare the pre-commitment and time-consistent strategies under different situations with some numerical simulations. The results indicate that the time-consistent strategy is more stable and secure than pre-commitment strategy under the generalized mean–variance criterion.  相似文献   

2.
This paper studies the time-consistent investment strategy for a defined contribution (DC) pension plan under the mean–variance criterion. Since the time horizon of a pension fund management problem is relatively long, two background risks are taken into account: the inflation risk and the salary risk. Meanwhile, there are a risk-free asset, a stock and an inflation-indexed bond available in the financial market. The extended Hamilton–Jacobi–Bellman (HJB for short) equation of the equilibrium value function and the verification theorem corresponding to our problem are presented. The closed-form time-consistent investment strategy and the equilibrium efficient frontier are obtained by stochastic control technique. The effects of the inflation and stochastic income on the equilibrium strategy and the equilibrium efficient frontier are illustrated by mathematical and numerical analysis. Finally, we compare in detail the time-consistent results in our paper with the pre-commitment one and find the distinct properties of these two results.  相似文献   

3.
ABSTRACT

We compare optimal liquidation policies in continuous time in the presence of trading impact using numerical solutions of Hamilton–Jacobi–Bellman (HJB) partial differential equations (PDEs). In particular, we compare the time-consistent mean-quadratic-variation strategy with the time-inconsistent (pre-commitment) mean-variance strategy. We show that the two different risk measures lead to very different strategies and liquidation profiles. In terms of the optimal trading velocities, the mean-quadratic-variation strategy is much less sensitive to changes in asset price and varies more smoothly. In terms of the liquidation profiles, the mean-variance strategy is much more variable, although the mean liquidation profiles for the two strategies are surprisingly similar. On a numerical note, we show that using an interpolation scheme along a parametric curve in conjunction with the semi-Lagrangian method results in significantly better accuracy than standard axis-aligned linear interpolation. We also demonstrate how a scaled computational grid can improve solution accuracy.  相似文献   

4.
This paper studies the optimal consumption–investment–reinsurance problem for an insurer with a general discount function and exponential utility function in a non-Markovian model. The appreciation rate and volatility of the stock, the premium rate and volatility of the risk process of the insurer are assumed to be adapted stochastic processes, while the interest rate is assumed to be deterministic. The object is to maximize the utility of intertemporal consumption and terminal wealth. By the method of multi-person differential game, we show that the time-consistent equilibrium strategy and the corresponding equilibrium value function can be characterized by the unique solutions of a BSDE and an integral equation. Under appropriate conditions, we show that this integral equation admits a unique solution. Furthermore, we compare the time-consistent equilibrium strategies with the optimal strategy for exponential discount function, and with the strategies for naive insurers in two special cases.  相似文献   

5.
In this paper, we investigate the optimal time-consistent investment–reinsurance strategies for an insurer with state dependent risk aversion and Value-at-Risk (VaR) constraints. The insurer can purchase proportional reinsurance to reduce its insurance risks and invest its wealth in a financial market consisting of one risk-free asset and one risky asset, whose price process follows a geometric Brownian motion. The surplus process of the insurer is approximated by a Brownian motion with drift. The two Brownian motions in the insurer’s surplus process and the risky asset’s price process are correlated, which describe the correlation or dependence between the insurance market and the financial market. We introduce the VaR control levels for the insurer to control its loss in investment–reinsurance strategies, which also represent the requirement of regulators on the insurer’s investment behavior. Under the mean–variance criterion, we formulate the optimal investment–reinsurance problem within a game theoretic framework. By using the technique of stochastic control theory and solving the corresponding extended Hamilton–Jacobi–Bellman (HJB) system of equations, we derive the closed-form expressions of the optimal investment–reinsurance strategies. In addition, we illustrate the optimal investment–reinsurance strategies by numerical examples and discuss the impact of the risk aversion, the correlation between the insurance market and the financial market, and the VaR control levels on the optimal strategies.  相似文献   

6.
This paper investigates the optimal time-consistent policies of an investment-reinsurance problem and an investment-only problem under the mean-variance criterion for an insurer whose surplus process is approximated by a Brownian motion with drift. The financial market considered by the insurer consists of one risk-free asset and multiple risky assets whose price processes follow geometric Brownian motions. A general verification theorem is developed, and explicit closed-form expressions of the optimal polices and the optimal value functions are derived for the two problems. Economic implications and numerical sensitivity analysis are presented for our results. Our main findings are: (i) the optimal time-consistent policies of both problems are independent of their corresponding wealth processes; (ii) the two problems have the same optimal investment policies; (iii) the parameters of the risky assets (the insurance market) have no impact on the optimal reinsurance (investment) policy; (iv) the premium return rate of the insurer does not affect the optimal policies but affects the optimal value functions; (v) reinsurance can increase the mean-variance utility.  相似文献   

7.
This paper considers the robust optimal reinsurance–investment strategy selection problem with price jumps and correlated claims for an ambiguity-averse insurer (AAI). The correlated claims mean that future claims are correlated with historical claims, which is measured by an extrapolative bias. In our model, the AAI transfers part of the risk due to insurance claims via reinsurance and invests the surplus in a financial market consisting of a risk-free asset and a risky asset whose price is described by a jump–diffusion model. Under the criterion of maximizing the expected utility of terminal wealth, we obtain closed-form solutions for the robust optimal reinsurance–investment strategy and the corresponding value function by using the stochastic dynamic programming approach. In order to examine the influence of investment risk on the insurer’s investment behavior, we further study the time-consistent reinsurance–investment strategy under the mean–variance framework and also obtain the explicit solution. Furthermore, we examine the relationship among the optimal reinsurance–investment strategies of the AAI under three typical cases. A series of numerical experiments are carried out to illustrate how the robust optimal reinsurance–investment strategy varies with model parameters, and result analyses reveal some interesting phenomena and provide useful guidances for reinsurance and investment in reality.  相似文献   

8.
In this paper, based on equilibrium control law proposed by Björk and Murgoci (2010), we study an optimal investment and reinsurance problem under partial information for insurer with mean–variance utility, where insurer’s risk aversion varies over time. Instead of treating this time-inconsistent problem as pre-committed, we aim to find time-consistent equilibrium strategy within a game theoretic framework. In particular, proportional reinsurance, acquiring new business, investing in financial market are available in the market. The surplus process of insurer is depicted by classical Lundberg model, and the financial market consists of one risk free asset and one risky asset with unobservable Markov-modulated regime switching drift process. By using reduction technique and solving a generalized extended HJB equation, we derive closed-form time-consistent investment–reinsurance strategy and corresponding value function. Moreover, we compare results under partial information with optimal investment–reinsurance strategy when Markov chain is observable. Finally, some numerical illustrations and sensitivity analysis are provided.  相似文献   

9.
Cao  Jing  Peng  Xing-chun  Hu  Yi-jun 《应用数学学报(英文版)》2016,32(4):1087-1100
Acta Mathematicae Applicatae Sinica, English Series - In this paper, we consider the problem of the optimal time-consistent investment and proportional reinsurance strategy under the mean-variance...  相似文献   

10.
This paper considers the problem of consumption and investment in a financial market within a continuous time stochastic economy. The investor exhibits a change in the discount rate. The investment opportunities are a stock and a riskless account. The market coefficients and discount factor switch according to a finite state Markov chain. The change in the discount rate leads to time inconsistencies of the investor’s decisions. The randomness in our model is driven by a Brownian motion and a Markov chain. Following Ekeland and Pirvu (2008) we introduce and characterize the subgame perfect strategies. Numerical experiments show the effect of time preference on subgame perfect strategies and the pre-commitment strategies.  相似文献   

11.
在考虑道德风险的情况下,以均值方差准则为目标研究保险人最优投资问题.假设保险盈余过程服从C-L模型,金融市场上存在一种无风险资产和一种风险资产可供投资,其中风险资产的价格过程服从几何布朗运动.在纯道德风险保险契约设计中,借鉴相关研究对努力水平和效用化努力成本的假设,量化道德风险对盈余过程的影响.在均值方差目标下,建立保险人最优投资问题的广义Hamilton-Jacobi-Bellman(HJB)方程,给出保险人时间一致的均衡投资策略和价值函数.结果显示累计索赔比例参数越大,公司对最优努力水平越敏感,采取措施降低道德风险有利于公司收益提升;努力成本参数越大,公司会降低努力水平减少支出,避免损失.  相似文献   

12.
In this paper we analyze how the optimal consumption, investment and life insurance rules are modified by the introduction of a class of time-inconsistent preferences. In particular, we account for the fact that an agent’s preferences evolve along the planning horizon according to her increasing concern about the bequest left to her descendants and about her welfare at retirement. To this end, we consider a stochastic continuous time model with random terminal time for an agent with a known distribution of lifetime under heterogeneous discounting. In order to obtain the time-consistent solution, we solve a non-standard dynamic programming equation. For the case of CRRA and CARA utility functions we compare the explicit solutions for the time-inconsistent and the time-consistent agent. The results are illustrated numerically.  相似文献   

13.
A general deterministic time-inconsistent optimal control problem is formulated for ordinary differential equations. To find a time-consistent equilibrium value function and the corresponding time-consistent equilibrium control, a non-cooperative N-person differential game (but essentially cooperative in some sense) is introduced. Under certain conditions, it is proved that the open-loop Nash equilibrium value function of the N -person differential game converges to a time-consistent equilibrium value function of the original problem, which is the value function of a time-consistent optimal control problem. Moreover, it is proved that any optimal control of the time-consistent limit problem is a time-consistent equilibrium control of the original problem.  相似文献   

14.
In this paper, we revisit the consumption–investment problem with a general discount function and a logarithmic utility function in a non-Markovian framework. The coefficients in our model, including the interest rate, appreciation rate and volatility of the stock, are assumed to be adapted stochastic processes. Following Yong (2012a,b)’s method, we study an N-person differential game. We adopt a martingale method to solve an optimization problem of each player and characterize their optimal strategies and value functions in terms of the unique solutions of BSDEs. Then by taking limit, we show that a time-consistent equilibrium consumption–investment strategy of the original problem consists of a deterministic function and the ratio of the market price of risk to the volatility, and the corresponding equilibrium value function can be characterized by the unique solution of a family of BSDEs parameterized by a time variable.  相似文献   

15.
In this paper, we consider the time-consistent reinsurance–investment strategy under the mean–variance criterion for an insurer whose surplus process is described by a Brownian motion with drift. The insurer can transfer part of the risk to a reinsurer via proportional reinsurance or acquire new business. Moreover, stochastic interest rate and inflation risks are taken into account. To reduce the two kinds of risks, not only a risk-free asset and a risky asset, but also a zero-coupon bond and Treasury Inflation Protected Securities (TIPS) are available to invest in for the insurer. Applying stochastic control theory, we provide and prove a verification theorem and establish the corresponding extended Hamilton–Jacobi–Bellman (HJB) equation. By solving the extended HJB equation, we derive the time-consistent reinsurance–investment strategy as well as the corresponding value function for the mean–variance problem, explicitly. Furthermore, we formulate a precommitment mean–variance problem and obtain the corresponding time-inconsistent strategy to compare with the time-consistent strategy. Finally, numerical simulations are presented to illustrate the effects of model parameters on the time-consistent strategy.  相似文献   

16.
This paper considers a mean–variance portfolio selection problem under partial information, that is, the investor can observe the risky asset price with random drift which is not directly observable in financial markets. Since the dynamic mean–variance portfolio selection problem is time inconsistent, to seek the time-consistent investment strategy, the optimization problem is formulated and tackled in a game theoretic framework. Closed-form expressions of the equilibrium investment strategy and the corresponding equilibrium value function under partial information are derived by solving an extended Hamilton–Jacobi–Bellman system of equations. In addition, the results are also given under complete information, which are need for the partial information case. Furthermore, some numerical examples are presented to illustrate the derived equilibrium investment strategies and numerical sensitivity analysis is provided.  相似文献   

17.
Numerous researchers have applied the martingale approach for models driven by Levy processes to study optimal investment problems. This paper considers an insurer who wants to maximize the expected utility of terminal wealth by selecting optimal investment and proportional reinsurance strategies. The insurer's risk process is modeled by a Levy process and the capital can be invested in a security market described by the standard Black-Scholes model. By the martingale approach, the closed-form solutions to the problems of expected utility maximization are derived. Numerical examples are presented to show the impact of model parameters on the optimal strategies.  相似文献   

18.
In this paper, we consider an optimal time-consistent reinsurance-investment problem incorporating a defaultable security for a mean–variance insurer under a constant elasticity of variance (CEV) model. In our model, the insurer’s surplus process is described by a jump-diffusion risk model, the insurer can purchase proportional reinsurance and invest in a financial market consisting of a risk-free asset, a defaultable bond and a risky asset whose price process is assumed to follow a CEV model. Using a game theoretic approach, we establish the extended Hamilton–Jacobi–Bellman system for the post-default case and the pre-default case, respectively. Furthermore, we obtain the closed-from expressions for the time-consistent reinsurance-investment strategy and the corresponding value function in both cases. Finally, we provide numerical examples to illustrate the impacts of model parameters on the optimal time-consistent strategy.  相似文献   

19.
Peng Yang 《Optimization》2017,66(5):737-758
This paper study an optimal time-consistent reinsurance-investment strategy selection problem in a financial market with jump-diffusion risky asset, where the insurance risk model is modulated by a compound Poisson process. The aggregate claim process and the price process of risky asset are correlated by a common Poisson process. The objective of the insurer is to choose an optimal time-consistent reinsurance-investment strategy so as to maximize the expected terminal surplus while minimizing the variance of the terminal surplus. Since this problem is time-inconsistent, we attack it by placing the problem within a game theoretic framework and looking for subgame perfect Nash equilibrium strategy. We investigate the problem using the extended Hamilton–Jacobi–Bellman dynamic programming approach. Closed-form solutions for the optimal reinsurance-investment strategy and the corresponding value functions are obtained. Numerical examples and economic significance analysis are also provided to illustrate how the optimal reinsurance-investment strategy changes when some model parameters vary.  相似文献   

20.
竞争条件下公司最优投资策略纳什均衡分析   总被引:3,自引:0,他引:3  
大多数实物期权文献都只是研究一个公司在没有竞争条件下的最优决策,然而实际上竞争者的行为经常影响到公司的投资机会.通过建立投资概率是临界值的函数模型,根据期权博弈理论研究了在不确定条件和不同信息结构下,一个或多个公司的最优投资策略纳什均衡解,并用MATLAB语言对案例进行了仿真分析,画图说明了参数变化对投资策略的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号