首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We show that radiative heat transfer between two solid surfaces at short separation may increase by many orders of magnitude when the surfaces are covered by adsorbates. In this case, the heat transfer is determined by resonant photon tunneling between adsorbate vibrational modes. We propose an experiment to check the theory.  相似文献   

2.
液滴撞击加热壁面传热实验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
沈胜强  张洁珊  梁刚涛 《物理学报》2015,64(13):134704-134704
本文采用高速摄像仪对水滴和乙醇液滴撞击加热壁面后的蒸发过程进行了实验观测, 分析了液滴撞击加热壁面后的蒸发特性参数. 实验中, 两种液体初始温度均为20 ℃, 不锈钢壁面初始温度范围为68-126℃. 水滴初始直径为2.07 mm, 撞击壁面时Weber 数为2-44; 乙醇液滴初始直径为1.64 mm, Weber数为3-88. 结果表明, 液滴受到重力、表面张力及流动性的影响, 在蒸发过程的大部分时间内, 水滴高度持续降低而接触直径几乎不变; 蒸发后期, 液滴发生回缩, 水滴的接触直径、高度和接触角出现振荡现象. 乙醇液滴的接触角随时间的增加呈现先减小随后保持不变的趋势, 而接触直径和高度则持续减小, 直到液滴完全蒸发. 液滴蒸发总时长与液体物性和壁面温度有关, 随壁面温度的升高而减小, 与液滴撞击壁面时的Weber 数无关. 同时, 随着壁面温度的升高, 液滴显热部分占总换热量的比重增大, 显热部分能量不可忽略, 本文实验条件下得到水滴的平均热流密度为0.014-0.110 W·mm-2.  相似文献   

3.
In the frame of the JOULE 1 R&D programme of the Commission of the European Communities a project has been carried out on enhanced evaporation heat transfer surfaces. A specific investigation has been realised on refrigerant oil mixtures boiling in a planar confined space.An experimental investigation of the boiling phenomenon in the confined space between a 30 mm wide × 120 mm high, heated plate and an opposing, adiabatic plate was carried out. The heated surface was made of a copper-aluminium-nickel alloy (Ra = 1 micrometer) and a saturated R-113/SUNISO 3GS oil mixture at atmospheric pressure was used as the boiling fluid.The maximum heat flux tested was approximately 90% of CHF. The parameters investigated were the gap size (1–5 mm) and the oil concentration (1–7% by weight). It was again observed that confinement does not improve the nucleate boiling performance of pure R-113 in any significant way, whereas the CHF decreases with decreasing gap size. In addition, while the presence of oil was observed to have only a relatively minor effect on low flux nucleate boiling, it caused a serious degradation of the high flux boiling performance. This deterioration increased with increasing oil concentration and was more severe for smaller gap sizes. However, for a given gap size, the CHF increased with increasing oil concentration accompanied by increasingly larger surface superheats.  相似文献   

4.
微结构表面封闭式喷雾冷却传热特性   总被引:3,自引:2,他引:1       下载免费PDF全文
以蒸馏水为工质,在闭式循环喷雾冷却系统上,变化喷雾流量,研究了表面几何结构对喷雾传热性能的影响。从对流换热和相变换热比例关系的角度,对喷雾换热机理进行了实验研究。结果表明:与光滑表面相比,微结构表面可明显增强喷雾换热强度,这主要归因于相变换热的增强。表面温度较低时,直肋面换热效果最好 ;增大流量,光面换热增强,而直肋面变化不明显。表面温度较高时,方肋面换热效果最好;随着流量增大,所有面换热均增强。对于微结构表面,相变换热份额均大于50%,故而以相变换热为主;而光滑表面,即使在温度较低时,相变换热份额也大于20%。临界热流密度与三相接触线长度正相关,流量为15.9 mL/min时,方肋面、直肋面和光面的临界热流密度依次为159.1,120.2,109.8 W/cm2,蒸发效率分别为96.0%,72.5%,67.1%。  相似文献   

5.
对于非共沸混合制冷剂R410A在外径9.52mm、5mm的两种不同的几何参数的内螺纹的流动沸腾换热进行了实验研究,分析讨论了制冷剂质量流速、管外水流量变化、强化管的参数、强化管的压降对换热系数影响以及其机理。试验的结果表明:换热系数随着流量的增大而增大,管径的大小对换热系数的影响较大,在相同的流量下,9.52mm的换热系数比5mm的大到110%~230%,5mm管的压降比9.52mm的大200%~300%。  相似文献   

6.
Heat transfer simulation is of great significance for the heating equipments control. In this paper, a set of models is proposed to solve heat transfer problems in a furnace, including radiation and convection. The heat transfer models are integrated with a furnace model to simulate the heating process. The heating rate is increased due to enhanced heat transfer at the surfaces by changing furnace chamber geometry. A fixed grid enthalpy formulation is applied to model heat transfer for an oval geometry. The heating temperature was found to increase linearly with curvature of the interior.  相似文献   

7.
Research on nanofluids has progressed rapidly since their enhanced thermal conductivities were identified about a decade ago. For boiling heat transfer with nanofluids, however, many contradictory results have been reported, which cannot be explained by conventional theories developed for pure fluids. Recent progress in colloidal science shows that the presence of nanoparticles could enhance the spreading and wettability of base fluids through a long-range structural disjoining pressure. This article explores theoretically the influence of structural disjoining pressure to the nucleate boiling heat transfer through a four-zoned microlayer evaporation model. The influence of particle size, particle concentration, and heat flux on the structural disjoining pressure and the interfacial shape of the microlayer are investigated. The calculated equilibrium interfacial shape shows that the meniscus is displaced toward the vapor phase in the presence of nanoparticles, an implication of enhanced wettability. Such an improved wettability affects the number of active nucleate sites and bubble dynamics significantly, which could be one of the important parameters that is responsible for the controversy of boiling heat transfer with nanofluids reported in the literature.  相似文献   

8.
9.
The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.  相似文献   

10.
The effect of liquid subcooling below the saturation temperature on the third heat transfer crisis was studied experimentally at pool boiling. Experimental data on the threshold values of superheating and heat fluxes, above which the evaporation front and third heat transfer crisis for acetone at subcooling from 0.3 to 10 K are formed, were shown. Formation of evaporation fronts is the necessary, but not sufficient condition for the third heat transfer crisis at subcooling. It was found that formation of a stable vapor film after propagation of condensation fronts over the heater surface is possible at heat fluxes considerably lower than the first critical one.  相似文献   

11.
简述了列管式换热器强化传热技术的进展及发展方向,管程强化传热采用螺纹管、横纹管、波纹管、缩放管、管内插入物、三维内肋管、翘片管等传热元件,壳程强化传热采用板式支撑、折流插式支撑、空心环支撑、管子自支撑等管束支撑结构。指出了列管式换热器研究中存在的不足。指出了今后的发展方向,为列管式换热器的研究和应用提供理论参考。  相似文献   

12.
An experimental study of heat transfer was carried out in the hyper-vapotron loop-??(HVL-??) test facility. Phenomena of subcooling were observed using the techniques of planar laser induced fluorescent (PLIF), high speed photography, particle image velocimetry, etc. The flow and condition parameters were as follows: (1) CuCrZr alloy material, (2) triangle and rectangle fin structures, (3) inlet subcooling temperature of 296K, (4) Rhodamine solution flow velocity of 0.3~0.5m•s−1. It was found that the heat transfer coefficient (HTC) of rectangle fin is 1.3??1.5 times higher than the triangle fin under the same tested conditions. Furthermore, the heat transfer efficiency is extraordinary dependent on the maintain time of vortex forming between the fins.  相似文献   

13.
陈福振  强洪夫  高巍然 《物理学报》2014,63(23):230206-230206
在气粒两相流动问题中,颗粒间以及气体与颗粒间的传热问题不可忽略.光滑离散颗粒流体动力学(SDPH)模型作为一种新的求解气粒两相流动问题的方法,已经成功应用于模拟风沙运动等问题.在此基础上,提出了SDPH方法的热传导模型,模拟了气粒两相流动问题中的热传导过程以及颗粒蒸发过程.首先引入各相的能量方程,利用有限差分与光滑粒子流体动力学一阶导数相结合的方法,处理各相内部热传导项中的二阶导数问题,基于气粒两相间温度差及对流换热系数计算颗粒与气体间的热传导量,推导得到了含热传导模型的气粒两相流SDPH计算方程组,模拟计算了圆盘形颗粒团算例及鼓泡流化床内部热传导算例,并与双流体模型计算结果进行对比,结果基本符合;其次利用离散液滴模型中的颗粒蒸发传质传热定律计算颗粒的蒸发过程,数值模拟了颗粒射流蒸发过程,并与离散颗粒模型结果进行对比,两者符合得较好,验证了该方法的准确性及实用性.  相似文献   

14.
搭建了常压水超汽化实验回路(HVL-Ⅰ),采用平面激光诱导荧光(PLIF)、高速摄影、微距摄影、粒子成像测速(PIV)等先进测量技术,开展聚变堆面对等离子体部件(第一壁、偏滤器)在高热流过冷沸腾工况下强化换热特性实验研究。选择三角形和矩形翅片的铬锆铜超汽化样件,实验工况为常压室温(296K),若丹明B 水溶液流速 0.3~0.5m•s−1 连续可调,热流密度~5MW•m−2。实验结果表明同等工况下,矩形翅片比三角形翅片换热效果显著增强,性能提升约30%~50%。微距摄影显示翅根涡流形态保持时间越短,越有利于小汽泡充分扩散,从而使换热得到强化。  相似文献   

15.
文中针对三维坐标系下,圆翅片叉排热管散热器的流动和传热特性进行数值模拟研究。分析了三个主要影响因素:翅片间距、翅片厚度和排间距对平均换热系数、流动摩擦系数和热阻的影响。翅片间距分别为6mm、7mm和8mm,翅片厚度分别为0.8mm、1mm和1.2mm,排间距分别为21.7mm、23mm和24.3mm。模拟结果表明:随着迎面风速增加,摩擦系数减小,传热热阻减小;随着翅片厚度的增加,摩擦系数减小、换热能力增强,热阻在大Re时增大明显。随着翅片间距的增大,摩擦系数增大,换热能力提高,热阻增大;随着排间距的增大,摩擦系数在正三角形管排布时的值上下变动,且只有排间距显著增大时,换热能力和热阻才会增大。  相似文献   

16.
Radiation heat loss is an important type of heat loss in thermal systems. In this work, a numerical study of the transient response of two circular radiation heat shields inserted between two parallel and circular surfaces of emissivities ε1 and ε2 is presented. The same dimensions have been assumed for the two main radiating surfaces and the two radiation shields. The radiation shields are assumed to have different emissivities on their top (ε3 and ε5) and bottom ( ε4 and ε6) surfaces, and both are assumed to be different but linear functions of temperature. A specific configuration is investigated in detail to highlight the transient temperature and heat transfer characteristics of the system. Some new results for the transient temperature and heat transfer characteristics of the system such as the effect of shield location, shield emissivities, the temperature dependence of shield emissivities, system dimensions, temperatures of the hot and cold surfaces and emissivities of the hot and cold surfaces are presented for future references. It has been observed that increasing the temperature of the first radiation shield by changing a parameter such as surface emissivity or distance between the radiation shield or the temperature of the hot surface, will not necessarily decrease the temperature of the second radiation shield.  相似文献   

17.
Pool boiling heat transfer performances of Cu-Al2O3-coated copper surfaces have been studied experimentally for its potential use in heat transfer applications. In the present study, a two-step electrochemical deposition method is examined. This method provides an easy control on surface properties such as porosity and coating thickness. The deposition method is studied carefully and responsible surface morphology parameters are reported. After performing the pool boiling experiments on coated surfaces with DI water, the maximum critical heat flux of 1800 kW/m2 and heat transfer coefficient of 193 kW/m2 K, which are 68% and 260% higher than that of bare surface, respectively.  相似文献   

18.
The use of thermochromic liquid crystal technique (LCT) and true-colour image processing system in heat transfer modelling is described. Experimental procedure, led on rig at Technical University of Gdansk, cover full-field flow patterns in heat exchanger element (flat plate with fine-tubes in-line, staggered and with vortex generators) describing local heat transfer coefficient and Nusselt number on the surfaces. Also the dependence of average heat transfer and pressure drop on Reynolds number and geometrical parameters is investigated.  相似文献   

19.
The performance of millimeter-scale combustors intended for miniaturized power and propulsion systems is strongly influenced by heat exchange to and within the combustor structure. Accordingly, a one-dimensional model with full chemistry that includes heat exchange to and within the combustor wall has been developed. It is used to study the effects of axial heat transfer from the post-flame to the pre-flame via wall conduction in a silicon micro-channel combustor with planar symmetry. The simulations show that axial heat transfer widens stability limits, increases the burning rate, and can enable the construction of smaller, higher power density combustors. Axial heat transfer also enhances the benefits of operating at elevated pressures. The simulations also show that heat loss to the environment places a lower bound on the combustor volume. Maximum power density combustor configurations are identified under adiabatic and non-adiabatic conditions. The maximum power density tends to increase with increasing pressure while the micro-channel length and height associated with the maximum tend to decrease.  相似文献   

20.
纳米流体对流换热系数增大机理   总被引:4,自引:0,他引:4       下载免费PDF全文
谢华清  陈立飞 《物理学报》2009,58(4):2513-2517
纳米流体流动换热能力优于传统流体介质.研究了纳米流体热物性的提升和热散射对其对流换热系数的影响.结果表明,纳米颗粒的加入,优化了介质的热物性,增大了导热系数,强化了纳米流体内颗粒、流体以及流道管壁碰撞和相互作用,同时加强了流体的混合脉动和湍流,从而增大了对流换热系数. 关键词: 纳米流体 换热系数 热散射  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号