首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The reactions between oxophilic group 4 metal chlorides, ??-keto ylides in THF, led to the formation of titanium, zirconium and hafnium edge-shared [M2Cl10]2? complexes (1a?C3f). We describe that the reaction between MCl4 (M = Ti, Zr and Hf) with phosphorus ylides produce edge-shared [M2X10]2? complexes instead of O-coordination previously reported complexes. Adding dimethyl sulfoxide (DMSO) to these complexes in room temperature crystalline solid [M(DMSO)8] · 4Cl · mH2O · DMSO] (M = Ti (1g), Zr (2g) and Hf (3g); m = 0?C3) together with phosphonium salts in mother liquid were formed. The compounds were characterized by elemental analysis, IR and 1H, 13C and 31P NMR spectroscopy.  相似文献   

2.
The first stable homoleptic alkenyls of the early transition metals, MRn, (R = C(Ph)=CMe2; M = Ti, Zr, Hf, n = 4; and M = Cr, n = 3) and the related species (C5H5)2MR2 (M = Ti, Zr) and (C5H5)2Zr(Cl)R have been prepared using appropriate organolithium reagents. Cleavage and insertion reactions are reported for the new compounds.  相似文献   

3.
The interaction of some transition metal halides with o-mercaptophenol o-Mercaptophenol reacts with WCl6, TiCl4, ZrCl4, NbCl5 and TaCl5 giving the corresponding tris-chelat-komplexe W(C6H4OS)3, H2[M(C6H4OS)3] (M = Ti, Zr), H[M(C6H4OS)3] (M = Nb, Ta). (C5H5)2TiCl2 and (C5H5)2ZrBr2give in presence of triethylamine the compounds (C5H5)2M(C6H4OS) (M = Ti, Zr). By reaction of nickel(II) acetyl-acetonate with o-mercaptophenol the polymeric octahedral complex nickel-bis-(o-hydroxy-thiophenolate) results.  相似文献   

4.
1-Hexene transformations in the catalytic systems L2MCl2–XAlBui2 (L = Cp, M = Ti, Zr, Hf; L = Ind, rac-H4C2[THInd]2, M = Zr; X = H, Bu i) and [Cp2ZrH2]2-ClAlR2 activated by MMAO-12, B(C6F5)3, or (Ph3C)[B(C6F5)4] in chlorinated solvents (CH2Cl2, CHCl3, o-Cl2C6H4, ClCH2CH2Cl) were studied. The systems [Cp2ZrH2]2-MMAO-12, [Cp2ZrH2]2-ClAlBui2-MMAO-12, or Cp2ZrCl2-HAlBui2-MMAO-12 (B(C6F5)3) in CH2Cl2 showed the highest activity and selectivity towards the formation of vinylidene head-to-tail alkene dimers. The use of chloroform as a solvent provides further in situ dimer dimerization to give a tetramer yield of up to 89%. A study of the reaction of [Cp2ZrH2]2 or Cp2ZrCl2 with organoaluminum compounds and MMAO-12 by NMR spectroscopy confirmed the formation of Zr,Zr-hydride clusters as key intermediates of the alkene dimerization. The probable structure of the Zr,Zr-hydride clusters and ways of their generation in the catalytic systems were analyzed using a quantum chemical approach (DFT).  相似文献   

5.
The reaction of MCl4(thf)2 (M = Zr, Hf) with 1,4-dilitiobutane in diethyl ether at –25 °C or at 0 °C with a molar ratio of 1 : 3 yields the homoleptic “ate” complexes [(thf)4Li] [{(thf)Li}M(C4H8)3] 1 - Zr (M = Zr) and 1 - Hf (M = Hf). The crystalline compounds form ion lattices with solvent-separated [(thf)4Li]+ cations and [{(thf)Li}M(C4H8)3] anions. The NMR spectra at –20 °C show magnetic equivalence of the M–CH2 and of the β-CH2 groups of the butane-1,4-diide ligands on the NMR time scale. Analogous reactions of MCl4(thf)2 with 1,4-dilithiobutane with a molar ratio of 1 : 2 proceed unclear. However, single crystals of [Li(thf)4] [HfCl5(thf)] ( 2 ) can be isolated with the hafnium atom in a distorted octahedral coordination sphere of five chloro and one thf ligand. NMR spectra allow to elucidate the time-dependent degradation of 1-Hf and 1-Zr in THF and toluene at 25 °C via THF cleavage. Addition of tmeda to a solution of 1-Zr allows the isolation of intermediately formed [{(tmeda)Li}2Zr(nBu)2(C4H8)2] ( 3 ).  相似文献   

6.
Elementary sulfur and selenium combine (in boiling heptane) with [(tBuCp)2-Zr(C6H4R)2] (Cp = η5-C5H4; R = OCH3) to give the corresponding dichalcogenophenylenezirconocene. With tellurium, the reaction proceeds only at lower temperature (in boiling hexane), affording the first ditellurophenylenezirconocene. As no metallacycle was obtained with the Cp ligand or when the metal is Hf, complexes of the general type [(RCp)2MSe2C6H4-o] (M = Ti, Zr, Hf; R = H, t-Bu, (CH3)5) have been synthesized by allowing metallocene dichlorides to react with potassium benzenediselenolate, prepared by cleaving [(t-BuCp)2ZrSe2C6H4-o] with t-BuOK.  相似文献   

7.
The non-vicinal methyl-phenyl-substituted zirconocene dichlorides meso-and rac-[Zr{η5-(1-Ph-3-Me-C5H3)}2Cl2] and [Zr(η5-C5H5){η5-(1-Ph-3-Me-C5H3)}Cl2] have been isolated by transmetallation of the lithium salt Li(1-Ph-3-Me-C5H3) to ZrCl4(THF)2 and [Zr(η5-C5H5)Cl3 · DME] (DME = dimethoxyethane), respectively. Similar transmetallation of the lithium salt Li2[(Me-Ph-C5H2SiMe2)2O] to MCl4 gave the ansa-metallocenes [M{η5-(Me-Ph-C5H2SiMe2)2O}Cl2] (M = Zr, Hf) for which the meso- and rac-diastereomers were separated. The dimethyl and dibenzyl derivatives of these metallocenes were also prepared and the structure of all of these compounds determined by NMR spectroscopy. The molecular structure of rac-[Zr{η5-(2-Me-4-Ph-C5H2SiMe2)2O}Cl2] was determined by single crystal X-ray diffraction methods. The activity of the dichlorometallocenes/MAO catalysts for ethene and propene polymerization was evaluated.  相似文献   

8.
The infrared and Raman spectra of some cyclopentadienyl compounds of the transition metals, namely Ti(C5H5)Cl3 and M(C5H5)2Cl2 (M = Ti, Zr and Hf), are reported and discussed. The infrared spectra of the gaseous species isolated in argon matrices at 10 K provide structural information about the single molecules. Particular attention has been paid to the low-frequency region in order to achieve more reliable assignments for the internal-rotation modes. The structural data and the fundamental frequencies derived from the spectra are employed in a calculation of the thermodynamic functions for these compounds in the ideal gas state.  相似文献   

9.
PMR and mass spectral analysis have been used to study the interchange of π-bonded cyclopentadienyl rings with σ-bonded cyclopentadienyl rings in the compounds (C5H5)4M (M = Ti, Zr, Hf, Nb, Ta, Mo and W) and (C5H5)3V or a-bonded benzylcyclopentadienyl rings in the compounds (C6H5CH2C5H4) (C5H5)2MC1 (M = Ti, Zr, Hf, Nb, Ta, Mo and W). As soon as the Cp4M species are generated (indicated by a color change), the interchange occurs and the equilibrium is established. As reported, no such interchange was observed in (C5H5) 4Mo in the PMR time scale; however, it does occur after a longer time. By using this interchange behavior of the cyclopentadienyl ring, metallocene dichlorides of Ti, Zr, Hf, V, Nb, Ta, Mo and W have been attached to polystyrene-divinylbenzene beads.  相似文献   

10.
Complexes of the general formula [Cl2Fc] nML, (Cl2Fc = C1C5H4FeC5H3Cl; ML = Fe(CO)2C5H5, AuP(C6H5)3, Mn(CO)5 or Ir(CO)[P(C6H5)3]2 when n = 1; ML = Ti(C5H5)2 when n = 2) have been prepared from a salt elimination reaction between 1,1′-dichloro-2-lithioferrocene and transition metal halide complexes. Spectroscopic properties of the compounds are reported. The titanium complex exists in meso and dl forms.  相似文献   

11.
12.
Organodihydridoelement anions of germanium and tin were reacted with metallocene dichlorides of Group 4 metals Ti, Zr and Hf. The germate anion [Ar*GeH2] reacts with hafnocene dichloride under formation of the substitution product [Cp2Hf(GeH2Ar*)2]. Reaction of the organodihydridostannate with metallocene dichlorides affords the reduction products [Cp2M(SnHAr*)2] (M=Ti, Zr, Hf). Abstraction of a hydride substituent from the titanium bis(hydridoorganostannylene) complex results in formation of cation [Cp2M(SnAr*)(SnHAr*)]+ exhibiting a short Ti–Sn interaction. (Ar*=2,6-Trip2C6H3, Trip=2,4,6-triisopropylphenyl).  相似文献   

13.
Synthesis and studies on some five-coordinate ruthenium(II) complexes, viz. [Ru(MPh3)(C6H5CHO)2Cl2] and [Ru(MPh3)2(CO)Cl2] (where M = P or As) have been described. Reactions of [Ru(MPh3)(C6H5CHO)2Cl2] with N,N-dimethylformamide, dimethylsulphoxide and pyridine and of [Ru(MPh3)2(CO)Cl2] with pyridine are described.  相似文献   

14.
Reactions of Ph2P(CH2)n(C5H4)Li, (n = 0, 2), with MCl4 or CpTiCl3 (M = Ti, Zr; Cp = η5-C5H5) form Cl2M[(η5-C5H4)(CH2)nPPh2]2 or Cl2CpTi[(η5-C5H4)-(CH2)2PPh2] in good yields. Chemical reduction with Al, or electrochemical reduction of these complexes, under CO, are described. The titanium(IV) and zirconium(IV) derivatives react with metal carbonyls (Mo(CO)6, Cr(CO)6, Fe(CO)5, Mo(CO)4(C8H12)) under formation of new heterobimetallic complexes. Reduction with Al of Cl2CpTi[(η5-C5H4)(CH2)2PPh2]Mo(CO)5 under CO results in a new heterobimetallic species containing low valent titanium. Both complexes Cl2M[(η5-C5H4)(CH2)2PPh2]2 (M = Ti, Zr) react with [Rh(μ-Cl)(CO)(C2H4)]2 to yield {RhCl(CO)(Cl2M[(η5-C5H4)(CH2)2PPh2]2)}x, which is assumed to be a dimer, in which the titanium or the zirconium compounds act as bridging diphosphine ligands between the rhodium atoms.  相似文献   

15.
Hydrogenolysis of M(CH3)2(M = Zr, Hf) bonds gives novel substituted zirconocene and hafnocene dihydrides. The use of the optically active complex [η5-C6H5C★H(CH3)C5H4] (η5-C5H5)Zr(CH3)2 as a catalyst in homogeneous hydrogenation of prochiral alkenes is reported.  相似文献   

16.
A series of zirconium and hafnium alkoxide and amide complexes containing symmetrical tridentate pyrrolyl ligand, [C4H2NH(2,5-CH2NMe2)2] have been synthesized conveniently by treatment of 2,6-di-tert-butylphenol, tert-butanol or pyrrole in pentane and their reactivity over ring opening polymerization of ε-caprolactone have been carried out. Reactions of [C4H2NH(2,5-CH2NMe2)2] with M(NEt2)4 (M = Zr or Hf) originate [C4H2N(2,5-CH2NMe2)2]M(NEt2)3 (1, M = Zr; 2, M = Hf). Furthermore, reactions of [C4H2N(2,5-CH2NMe2)2]M(NEt2)3 with 2,6-di-tert-butylphenol, tert-butanol or pyrrole afford [C4H2N(2,5-CH2NMe2)2]M(OC6H3-2,6-tBu2)(NEt2)2 (3, M = Zr; 4, M = Hf), [C4H2N(2,5-CH2NMe2)2]M(OtBu)3 (5, M = Zr; 6, M = Hf) and [C4H2N(2,5-CH2NMe2)2]M(C4H4N)3 (7, M = Zr; 8, M = Hf), respectively, in satisfactory yield. All the complexes have been characterized by NMR spectra as well 3, 4 and 6 subjected to the X-ray diffraction analysis. Complexes 3-8 have been used as initiators for the ring-opening polymerization of ε-caprolactone and observed broad PDI values (1.84-2.75) representing multiple reactivity centers of these complexes.  相似文献   

17.
The complexes (C5H5)2M[P(OCH3)3]2 (M = Ti and Zr) can be prepared by condensing sodium atoms at ?100°C into tetrahydrofuran solutions containing (C5H5)2MCl2 and excess trimethyl phosphite.  相似文献   

18.
A novel one‐pot method was developed for the preparation of [Ti(η5‐C5H5)(η7‐C7H7)] (troticene, 1 ) by reaction of sodium cyclopentadienide (NaCp) with [TiCl4(thf)2], followed by reduction of the intermediate [(η5‐C5H5)2TiCl2] with magnesium in the presence of cycloheptatriene (C7H8). The [n]troticenophanes 3 (n=1), 4 , 8 , 10 (n=2), and 11 (n=3) were synthesized by salt elimination reactions between dilithiated troticene, [Ti(η5‐C5H4Li)(η7‐C7H6Li)] ? pmdta ( 2 ) (pmdta=N,N′,N′,N′′,N′′‐pentamethyldiethylenetriamine), and the appropriate organoelement dichlorides Cl2Sn(Mes)2 (Mes=2,4,6‐trimethylphenyl), Cl2Sn2(tBu)4, Cl2B2(NMe2)2, Cl2Si2Me4, and (ClSiMe2)2CH2, respectively. Their structural characterization was carried out by single‐crystal X‐ray diffraction and multinuclear NMR spectroscopy. The stanna[1]‐ and stanna[2]troticenophanes 3 and 4 represent the first heteroleptic sandwich complexes bearing Sn atoms in the ansa bridge. The reaction of 3 with [Pt(PEt3)3] resulted in regioselective insertion of the [Pt(PEt3)2] fragment into the Sn? Cipso bond between the tin atom and the seven‐membered ring, which afforded the platinastanna[2]troticenophane 5 . Oxidative addition was also observed upon treatment of 4 with elemental sulfur or selenium, to produce the [3]troticenophanes [Ti(η5‐C5H4SntBu2)(η7‐C7H6SntBu2)E] ( 6 : E=S; 7 : E=Se). The B? B bond of the bora[2]troticenophane 8 was readily cleaved by reaction with [Pt(PEt3)3] to form the corresponding oxidative addition product [Ti(η5‐C5H4BNMe2)(η7‐C7H6BNMe2)Pt(PEt3)2] ( 9 ). The solid‐state structures of compounds 5 , 6 , and 9 were also determined by single‐crystal X‐ray diffraction.  相似文献   

19.
Heterobimetallic complexes of the type [M(C6H6N2)2(M′)2(R)4]Cl2 have been synthesized by the direct reaction of [M(C6H8N2)2]Cl2 with Group 4 or 14 organometallic dichlorides Ph2M′Cl2,Me2M′Cl2 or Cp2M″Cl2 in 1:2 molar ratio in MeOH (M = Pd or Pt, M′ = Si or Sn and M″ = Ti or Zr). The compounds were characterized by elemental analysis, molecular weight determination, electronic, 1H NMR and IR spectra, magnetic susceptibilities and conductivity measurements. These studies showed that the compounds are monomers and dimagnetic in nature, with a square‐planar geometry around palladium and platinum metals. Both the free ligands and their metal complexes were screened for antimicrobial activity on different species of pathogenic fungi and bacteria and were found active in this respect.Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
The intense purple colored bi- and trimetallic complexes {Ti}(CH2SiMe3)[CC(η6-C6H5)Cr(CO)3] (3) ({Ti}=(η5-C5H5)2Ti) and [Ti][CC(η6-C6H5)Cr(CO)3]2 (5) {[Ti]=(η5-C5H4SiMe3)2Ti}, in which next to a Ti(IV) center a Cr(0) atom is present, are accessible by the reaction of Li[CC(η6-C6H5)Cr(CO)3] (2) with {Ti}(CH2SiMe3)Cl (1) or [Ti]Cl2 (4) in a 1:1 or 2:1 molar ratio. The chemical and electrochemical properties of 3, 5, {Ti}(CH2SiMe3)(CCFc) [Fc=(η5-C5H5)Fe(η5-C5H4)] and [Ti][(CC)nMc][(CC)mM′c] [n, m=1, 2; n=m; nm; Mc=(η5-C5H5)Fe(η5-C5H4); M′c=(η5-C5H5)Ru(η5-C5H4); Mc=M′c; Mc≠M′c] will be comparatively discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号