首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The infrared spectra (3500-50 cm-1) of gas and solid and the Raman spectrum (3500-50 cm-1) of liquid 2-fluorobutane, CH3CHFCH2CH3, have been recorded. Variable temperature studies over the range -105 to -150 degrees C of the infrared spectra (3500-400 cm-1) of the sample dissolved in liquid krypton have also been recorded. By utilizing the relative intensities of six conformer pairs each for both Me-trans/F-trans and Me-trans/H-trans, the Me-trans conformer is found to be the lowest energy form with an enthalpy difference to the F-trans conformer of 102 +/- 10 cm-1 ( 1.21+/- 0.12 kJmol-1) whereas the H-trans conformer is the highest energy form with an enthalpy difference of 208 +/- 21 cm-1 ( 2.49 +/- 0.25 kJmol-1) higher than the Me-trans form. At ambient temperature, it is estimated that there is 50 +/- 2% of the Me-trans form, 31 +/- 1% of the F-trans form, and 19 +/- 1% of the H-trans conformer present. Equilibrium geometries and total energies of the three conformers have been determined by ab initio calculations with full electron correlation by the perturbation method to second order using a number of basis sets. A complete vibrational assignment is proposed for the Me-trans conformer and many of the fundamentals have been identified for the other two forms based on the force constants, relative infrared and Raman intensities, and depolarization ratios obtained from MP2/6-31Gd ab initio calculations. The spectroscopic and theoretical results are compared to the corresponding properties for some similar molecules.  相似文献   

2.
The infrared spectra (3200-50 cm(-1)) of gaseous and solid and Raman spectra (3200-10 cm(-1)) of the liquid and solid methylvinyl silyl chloride, CH(2)=CHSiH(CH(3))Cl, and the Si-d isotopomer have been recorded. The three expected stable conformers (the three different groups eclipsing the double bond) have been identified in the fluid phase, but it was not possible to obtain an annealed solid with a single conformer. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton has been carried out. From these data the enthalpy differences between the most stable conformer with the hydrogen atom (HE) eclipsing the double bond to that with the chlorine atom (ClE) and the methyl group (ME) eclipsing the double bond have been determined to be 17+/-4 cm(-1) (203+/-48 Jmol(-1)) and 80+/-12 cm(-1) (957+/-144 Jmol(-1)), respectively. However in the liquid state the ME conformer is the most stable form with enthalpy differences of 13+/-4 and 27+/-7 cm(-1) to the HE and ClE rotamers, respectively. It is estimated that there is 39% of the HE conformer, 35% of the ClE conformer, and 26% of the ME conformer present at ambient temperature. A complete vibration assignment is proposed for the HE conformer which is based on infrared band contours and group frequencies, which is supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. Additionally, several of the fundamentals for the other two conformers have been assigned. The optimal geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational frequencies are reported for all three conformers from MP2/6-31G(d,p) ab initio calculations with full electron correlation. Optimized geometrical parameters and conformational stabilities have been obtained from MP2/6-311+G(d,p) calculations. At this highest level of calculations, the HE conformer is predicted to be more stable by 62 and 84 cm(-1) than the ME and ClE conformers, respectively. The coefficients from the potential function governing the conformational interchange have been obtained from the MP2/6-31G(d) ab initio calculations. By utilizing the frequency of the SiH stretching mode, the r(0)-H distance has been determined to be 1.481 A for the HE conformer. The ab initio calculated quantities are compared to the experimentally determined values where applicable, as well as to some corresponding results for some similar molecules.  相似文献   

3.
Infrared and Raman spectra (3500-60 cm(-1)) of gas and/or liquid and solid 1-bromo-1-silacyclopentane (c-C4H8SiBrH) have been recorded and the vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twisted form. Ab initio calculations with a variety of basis sets up to MP2(full)/6-311+G(2df,2pd) predict the envelope-axial and envelope-equatorial conformers to be saddle points with nearly the same energies but approximately 900 cm(-1) (5.98 kJ/mol) lower in energy than the planar conformer. Density functional theory calculations by the B3LYP method predict slightly lower energies for the two envelope forms and considerably lower energy for the planar form compared to the MP2 predictions. By utilizing the MP2(full)/6-31G(d) calculations the force constants, frequencies, infrared intensities, band contours, Raman activities, and depolarization values have been obtained to support the vibrational assignment. Estimated r0 structural parameters have been obtained from adjusted MP2(full)/6-311+G(d,p) calculations. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings.  相似文献   

4.
The infrared spectra (3500–50 cm−1) of the gas and solid and the Raman spectra (3500–50 cm−1) of the liquid and solid have been recorded for 2-hexyne, CH3–CC–CH2CH2CH3. Variable temperature studies of the infrared spectrum (3500–400 cm−1) of 2-hexyne dissolved in liquid krypton have also been recorded. Utilizing four anti/gauche conformer pairs, the anti(trans) conformer is found to be the lower energy form with an enthalpy difference of 74±8 cm−1 (0.88±0.10 kJ/mol) determined from krypton solutions over the temperature range −105 to −150 °C. At room temperature it is estimated that there is 42% of the anti conformer present. Equilibrium geometries and energies of the two conformers have been determined by ab initio (HF and MP2) and hybrid DFT (B3LYP) methods using a number of basis sets. Only the HF and DFT methods predict the anti conformer as the more stable form as found experimentally. A vibrational assignment is proposed based on the force constants, relative intensities, depolarization ratios from the ab initio and DFT calculations and on rotational band contours obtained using the calculated equilibrium geometries. From calculated energies it is shown that the CH3 group exhibits almost completely free rotation which is in agreement with the observation of sub-band structure for the degenerate methyl vibrations from which values of the Coriolis coupling constants, ζ, have been determined. The results are compared to similar properties of some corresponding molecules.  相似文献   

5.
The Raman (3200 to 10 cm–1) and infrared (3500 to 50 cm–1) spectra of vinyl chloroformate, H2C=CHOC(O)Cl, have been recorded for both the gas and solid. Additionally, the Raman spectrum of the liquid has been recorded, and depolarization ratios have been obtained. These data have been interpreted on the basis that the only stable conformation present at ambient temperature is thetrans-trans rotamer, where the firsttrans refers to the vinyl moiety relative to the O—CCl bond and the second to the C—Cl bond relative to the=C—O bond. Using harmonic rigid asymmetric top calculations, the infrared vapor phase contours for the C=O and the C=C stretch were predicted for thetrans-trans and for thecis-trans conformer, and were compared with experiment. For both fundamentals thetrans-trans hybrid reproduces the experimental contour, whereas thecis-trans contours fail to do so for both fundamentals. From far-infrared spectrum of the vapor obtained at 0.1 cm–1 resolution, the C(O)Cl andO-vinyl torsional fundamentals have been observed at 132 and 61 cm–1, respectively. Ther 0 structural parameters have been obtained from a combination of ab initio calculated parameters with appropriate offset values and the fit of the microwave rotational constants for the two naturally occurring chlorine isotopes. The structure, barrier to internal rotation, and vibrational frequencies have been determined from ab initio Hartree-Fock gradient calculations, using the 3-21G* and 6-31G* basis sets. These results are compared to those obtained experimentally and to similar quantities for some related molecules.  相似文献   

6.
The infrared (3500-50 cm−1) and Raman (3500-20 cm−1) spectra of 1,2-pentadiene, H2C=C=C(H)CH2CH3 (ethyl allene), have been recorded for both the gaseous and solid states. Additionally, the Raman spectrum of the liquid has been obtained with qualitative depolarization values. In the fluid phases both the cis and gauche conformers have been identified, with the gauche rotamer being the predominant form although it may not be the conformer of lowest energy. In the solid state only the cis conformer remains after repeated annealing of the crystal. The asymmetric torsion of the cis conformer is observed as a series of Q-branch transitions beginning at 103.4 cm−1 and falling to lower frequency. An estimate of the potential function governing conformer interconversion is provided. A complete assignment of the normal modes for the cis conformer is given and several of the fundamentals are assigned for the gauche rotamer. Ab initio electronic structure calculations of energies, conformational geometries, vibrational frequencies, and potential energy functions have been made to complement and assist the interpretation of the infrared and Raman spectra. In particular, the transitions among torsional energy levels for both the symmetric (methyl) and asymmetric (ethyl) motions have been calculated. The results are compared to the corresponding quantities for some similar molecules.  相似文献   

7.
The infrared spectra (3200-300 cm(-1)) of the gas and solid and the Raman spectra (3200-30 cm(-1) of the liquid with quantitative depolarization values and the solid have been recorded of ethynylmethyl cyclobutane (cyclobutylmethyl acetylene), c-C4H7CH2C[ triple bond]CH. Both the equatorial and the axial conformers have been identified in the fluid phases and both the gauche and trans conformations of the methyl acetylenic group have been identified for each ring conformer. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data the enthalpy differences have been determined to the 112 +/- 11 cm(-1) (1.34 +/- 0.13 kJ mol) between the most stable equatorial-trans (Et) conformer and the equatorial-gauche (Eg) conformer which is the second most stable conformer and 327 +/- 35 cm(-1) (3.91 + 0.42 kJ/mol) with the axial-gauche (Ag) conformer which is the least stable conformer. The enthalpy difference between the axial-trans (At) and the equatorial-gauche(Eg) is 56 +/- 6 cm(-1). At ambient temperature there is approximately 33% of the Et conformer, 38% of the Eg form, 15% of the At and 14% of the Ag conformer. For the polycrystalline solid the Eg conformer is the only form present which probably results form the packing in the crystal. A complete vibrational assignment is proposed for both equatorial conformers and additionally a few of the fundamentals of the At and Ag conformers have been assigned. The vibrational assignments are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G(d) calculations. Complete equilibrium geometries have been determined for all four possible rotamers by ab initio calculations employing the 6-31G(d) and 6-311 + + G(d,p) basis sets at levels of restricted Hartree-Fock (RHF) and /or Moller-Plesset (MP2) with full electron correlation by the perturbation method to second order. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

8.
Infrared spectra (4000–50 cm−1) of the vapor, amorphous and crystalline solids and Raman spectra (3600–10 cm−1) of the liquid with qualitative depolarization data as well as the amorphous and crystalline solids of methylaminothiophosphoryl difluoride, CH3N(H)P(=S)F2, and three deuterated species, CD3N(H)P(=S)F2, CH3N(D)P(=S)F2, and CD3N(D)P(=S)F2, have been recorded. The spectra indicate that in the vapor, liquid and amorphous solid a small amount of a second conformer is present, whereas only one conformer remains in the low temperature crystalline phase. The near-infrared spectra of the vapor confirms the existence of two conformers in the gas phase. Asymmetric top contour simulation of the vapor shows that the trans conformer is the predominant vapor phase conformer. From a temperature study of the Raman spectrum of the liquid the enthalpy difference between the trans and near-cis conformers was determined to be 368±15 cm−1 (4.41±0.2 kJ/mol), with the trans conformer being thermodynamically preferred. Ab Initio calculations with structure optimization using the 6-31G(d) and 6-311+G(d,p) basis sets at the restricted Hartree–Fock (RHF) and/or with full electron correlation by the perturbation method to second order (MP2) support the occurrence of near-trans (5° from trans) and near-cis (20° from cis) conformers. From the RHF/6-31G(d) calculation the near-trans conformer is predicted to be the more stable form by 451 cm−1 (5.35 kJ/mol) and from the MP2/6-311+G(d,p) calculation by 387 cm−1 (4.63 kJ/mol). All of the normal modes of the near-trans rotamer have been assigned based on infrared band contours, depolarization values and group frequencies and the assignment is supported by the normal coordinate calculation utilizing harmonic force constants from the MP2/6-31G(d) ab initio calculations.  相似文献   

9.
The infrared (3500–30 cm−1) spectra of gaseous and solid and the Raman (3500–10 cm−1) spectra of liquid with quantitative depolarization ratios and solid 2-chloroethyl silane, ClCH2CH2SiH3, have been recorded. Similar data have been recorded for the Si–d3 isotopomer. These data indicate that two conformers, trans and gauche, are present in the fluid states but only one conformer, trans, is present in the solid. The mid-infrared spectra of the sample dissolved in liquified xenon as a function of temperature (−55 to −100°C) has been recorded. The enthalpy difference between the conformers has been determined to be 181±12 cm−1 (2.17±0.14 kJ/mol) with the trans rotamer the more stable form. From the isolated Si–H frequencies from the Si–d2 isotopomer the ro Si–H distances of 1.484 and 1.483 Å for the trans and 1.481 for the gauche conformers have been obtained. Ab initio calculations have been carried out with several different basis sets up to MP2/6-311+G** from which structural parameters and conformational stabilities have been determined. With all the basis sets the trans form is predicted to be the more stable conformer which is consistent with the experimental results. These results are compared to the corresponding quantities for the carbon analogue.  相似文献   

10.
The infrared spectra (3500–40 cm−1) of gaseous and solid and the Raman spectra (3500–30 cm−1) of liquid and solid 1-chlorosilacyclobutane, c-C3H6SiClH, have been obtained. Both the axial and equatorial conformers with respect to the chlorine atom have been identified in the fluid phases. Variable temperature (−105 to −150°C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 211±17 cm−1 (2.53±0.21 kJ/mol), with the equatorial conformer being the more stable form and the only conformer remaining in the annealed solid. At ambient temperatures, approximately 26% of the axial conformers are present in the vapor phase. A complete vibrational assignment is proposed for the equatorial conformer, and many of the fundamentals of the axial conformers have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been determined for both rotamers by ab initio calculations employing the 6-31G(d) basis set at the levels of restricted Hartree–Fock (RHF) and/or Moller–Plesset (MP) to second order. Structural parameters have also been obtained using MP2/6-311+G(d,p) ab initio calculations. The r0 parameters for both conformers are obtained from a combination of the ab initio predicted values and the twelve previously reported microwave rotational constants. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

11.
The infrared (3500-30 cm(-1)) spectra of gaseous and solid and the Raman (3500-200 cm(-1)) spectra of the liquid with quantitative depolarization ratios and solid trans-3-chloropropenoyl chloride (trans-ClCHCHCClO) have been recorded. These data indicate that both the anti (carbonyl bond trans to the carbon-carbon double bond) and syn conformers are present in the fluid states but only the anti conformer is present in the crystalline state. The mid-infrared spectra of the sample dissolved in liquid xenon as a function of temperature (-55 to -100 degrees C) have been recorded. Utilizing conformer pairs at 870 and 725 cm(-1), 1215 and 1029 cm(-1), and 1215 and 1228 cm(-1), the enthalpy difference has been determined to be 136+/-5 cm(-1) (389+/-14 cal mol(-1)) with the anti conformer the more stable form. Optimized geometries and conformational stabilities were obtained from ab initio calculations at the levels of RHF/6-31G(d), MP2/6-31G(d), MP2/6-311 + + G(d,p), MP2/6-311 + + G(2d,2p) and MP2/6-311 + + G(2df,2pd) with only the latter two calculations predicting the anti rotamer to be the more stable form. The vibrational frequencies, harmonic force constants and infrared intensities were obtained from the MP2/6-31G(d) calculations, whereas the Raman activities and depolarization values were obtained from the RHF/6-31G(d) calculations. The spectra are interpreted in detail and the results are compared with those obtained for some related molecules.  相似文献   

12.
The Raman spectra (3200–10 cm−1) of ethyl methyl selenide in the gas, liquid and solid phases and the infrared spectra (3200–30 cm−1) of the gas and solid have been recorded. Qualitative depolarization ratios have been obtained for the lines in the Raman spectrum of the liquid. By a variable temperature Raman study of the liquid, it has been determined that the gauche conformer is more stable than the trans rotamer by 158±16 cm−1 (452±46 cal mol−1), and the gauche conformer is the rotamer present in the solid. A complete vibrational assignment for the gauche conformer is presented. All of these data are compared to the corresponding quantities obtained from ab initio Hartree—Fock gradient calculations employing the STO-3G* and 4–31G*/MIDI-4* basis sets. Complete equilibrium geometries have been calculated for both rotamers and the results are discussed and compared with the corresponding quantities for some similar molecules.  相似文献   

13.
The far infrared spectrum from 370 to 50 cm−1 of gaseous 2-bromoethanol, BrCH2CH2OH, was recorded at a resolution of 0.10 cm−1. The fundamental O–H torsion of the more stable gauche (Gg′) conformer, where the capital G refers to internal rotation around the C–C bond and the lower case g to the internal rotation around the C–O bond, was observed as a series of Q-branch transitions beginning at 340 cm−1. The corresponding O–H torsional modes were observed for two of the other high energy conformers, Tg (285 cm−1) and Tt (234 cm−1). The heavy atom asymmetric torsion (rotation around C–C bond) for the Gg′ conformer has been observed at 140 cm−1. Variable temperature (−63 to −100°C) studies of the infrared spectra (4000–400 cm−1) of the sample dissolved in liquid xenon have been recorded. From these data the enthalpy differences have been determined to be 411±40 cm−1 (4.92±0.48 kJ/mol) for the Gg′/Tt and 315±40 cm−1 (3.76±0.48 kJ/mol) for the Gg′/Tg, with the Gg′ conformer the most stable form. Additionally, the infrared spectrum of the gas, and Raman spectrum of the liquid phase are reported. The structural parameters, conformational stabilities, barriers to internal rotation and fundamental frequencies have been obtained from ab initio calculations utilizing different basis sets at the restricted Hartree–Fock or with full electron correlation by the perturbation method to second order. The theoretical results are compared to the experimental results when appropriate. Combining the ab initio calculations with the microwave rotational constants, r0 adjusted parameters have been obtained for the three 2-haloethanols (F, Cl and Br) for the Gg′ conformers.  相似文献   

14.
The FT-Raman spectra (2000-30 cm−1) of liquid and solid nitryl chloride, ClNO2, along with the infrared spectra (2000-80 cm−1) of the gas and solid have been recorded. All six fundamentals are confidently identified and the potential energy distributions determined from the force fields obtained from ab initio calculations. Several different basis sets have been utilized to determine the harmonic frequencies and force constants which are compared to the previously reported valence force constants. Structural parameters have been calculated with these basis sets including electron correlation with MP2, MP3 and MP4 perturbation. The calculated equilibrium structural parameters are compared to the experimental r0 structural parameters. The spectra of the solid indicate that there are at least two molecules per primitive cell. All of these results are compared to the corresponding quantities for some similar molecules.  相似文献   

15.
The microwave spectrum of cyclobutylisocyanate, c-C4H7NCO, has been investigated from 21,000 to 11,000 MHz and 11 transitions for the more stable equatorial-trans conformer were assigned. The rotational constants of the ground vibrational state have been determined and the molecule has been shown to be a near symmetric prolate rotor (К = ?0.99). The B and C rotational constants have been confidently determined to be B = 1508.68(3) and C = 1476.55(2) MHz, respectively, whereas the value for the A rotational constant of 6,891(302) MHz had a large uncertainty. Variable temperature (?100 to ?55 °C) studies of the infrared spectra (3,500–400 cm?1) of cyclobutylisocyanate dissolved in liquid xenon as well as the infrared spectra of the gas and solid have been recorded. In addition, the Raman spectra (3,600–100 cm?1) of the liquid have been investigated. These spectral data indicated the present of three conformers in the fluid states which are the equatorial-trans, equatorial-gauche, and axial-trans forms. The second part of the conformational name refers to the relative position of the NCO moiety relative to the alpha hydrogen. By utilizing four conformer pairs, an enthalpy difference of 131 ± 13 cm?1 (1.57 ± 0.16 kJ/mol) was obtained with the equatorial-trans conformer the more stable form, which is in good agreement with the ab initio predicted value of 137 ± 36 cm?1 (1.64 ± 0.43 kJ/mol). To aid in the vibrational assignment, ab initio and DFT calculations have been carried out by using a variety of basis sets up to 6-311G(3df,3pd).  相似文献   

16.
The infrared (3500–40 cm−1) spectra of gaseous and solid 1-fluoro-1-methylsilacyclobutane, c-C3H6SiF(CH3), have been recorded. Additionally, the Raman spectrum (3500–30 cm−1) of the liquid has been recorded and quantitative depolarization values have been obtained. Both the axial and equatorial (with respect to the methyl group) conformers have been identified in the fluid phases. Variable temperature (−55–−100°C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 267±10 cm−1 (3.19±0.12 kJ mol−1), with the axial conformer being the more stable form and the only conformer remaining in the polycrystalline solid. A complete vibrational assignment is proposed for the axial conformer and many of the fundamentals for the equatorial conformer have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G* and 6-311++G** basis sets at the levels of restricted Hartree–Fock (RHF) and/or Moller–Plesset (MP) to second order. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

17.
The infrared (3500-80 cm−1) and Raman (3500-20 cm−1) spectra of 3-fluoro-1-butyne, CH3CHFCCH, have been recorded for the gas and solid. Additionally, the Raman spectrum of the liquid has also been recorded to aid in the vibrational assignment. Ab initio electronic structure calculations of energies, geometrical structures, vibrational frequencies, infrared intensities, Raman activities and the potential energy function for the methyl torsion have been calculated to assist in the interpretation of the spectra. The fundamental torsional mode is observed at 251 cm−1 with a series of sequence peaks falling to lower frequency. The three-fold methyl torsional barrier is calculated to be 1441 ± 20 cm−1 (4.12 ± 0.06 kcal mol−1) where the uncertainty is partly due to the uncertainty in values of the V6 term. A complete vibrational assignment is proposed based on band contours, relative intensities, and ab initio predicted frequencies. Several fundamentals are significantly shifted in the condensed phases compared to values in the vapor state.  相似文献   

18.
The infrared and Raman spectrum of 1-bromo-3-fluoropropane is reported in the gas, liquid, amorphous solid and annealed polycrystalline states. Only one of the five possible conformers is stable in the crystal, designated the C conformer. The disordered phases show the presence of several other conformers of higher energy, due entirely to conformers designated B and D. Ab initio calculations were performed as rhf/4-31g*/MIDI-4*, rhf/6-31g* and mp2/6-31g* (both frozen core and full electron correlation) for all five conformers. The scaled harmonic force field obtained using the mp2 = full/6-31g* level of the theory is reported for the most stable conformer together with an assignment of fundamentals and potential energy distributions for local symmetry coordinates. Selected computational results are reported for all conformers together with scaled and unscaled wavenumbers and infrared and Raman intensities. The temperature dependent Raman spectrum is reported from room temperature to -100 degrees C. Only three of the five possible conformers can be identified in this spectrum, and there is no evidence of the other two. The energy differences between conformers in the liquid phase were found experimentally to be 132+/-27, 232+/-46 and 106+/-30 cm(-1), respectively between the D and C, B and C and D and B conformers. These differences are substantially less than the differences calculated ab initio at the highest level of the theory used, suggesting that energy differences were decreased by large dipole-dipole interactions present in the liquid but not in the gas.  相似文献   

19.
The infrared spectra of gaseous and solid 2,2,2-trifluoroethanimidamide, CF3(NH2)C=NH, have been recorded from 4000 to 80 cm–1. A vibrational assignment for the normal modes is proposed based on group frequencies and normal coordinate calculations utilizing C1 symmetry. The structures for both the cis [hydrogen atom of the =NH group is cis to the NH2 group] and trans geometric isomers have been determined from ab initio Hartree-Fock gradient calculations employing the GAUSSIAN-82 program with the 3–21G basis set. The most stable conformer at this level of calculation is found to be a C1, structure with a partially rotated CF3 group and the hydrogen atom of the imine group trans to the NH2 group. The calculated structural parameters have only very small differences between the conformers. Barriers to internal rotation for the NH2 and CF3 groups and vibrational frequencies have been calculated for the C1 form. The results of this investigation are compared with similar data on some corresponding molecules.Taken in part from the thesis of T. G. Sheehan which was submitted to the Department of Chemistry in partial fulfillment of the Ph.D. degree, May 1990.  相似文献   

20.
The microwave spectrum (6500-18 ,500 MHz) of 1-fluoro-1-silacyclopentane, c-C(4)H(8)SiHF has been recorded and 87 transitions for the (28)Si, (29)Si, (30)Si, and (13)C isotopomers have been assigned for a single conformer. Infrared spectra (3050-350 cm(-1)) of the gas and solid and Raman spectrum (3100-40 cm(-1)) of the liquid have also been recorded. The vibrational data indicate the presence of a single conformer with no symmetry which is consistent with the twist form. Ab initio calculations with a variety of basis sets up to MP2(full)/aug-cc-pVTZ predict the envelope-axial and envelope-equatorial conformers to be saddle points with nearly the same energies but much lower energy than the planar conformer. By utilizing the microwave rotational constants for seven isotopomers ((28)Si, (29)Si, (30)Si, and four (13)C) combined with the structural parameters predicted from the MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the twist conformer. The heavy atom distances in A? are: r(0)(SiC(2)) = 1.875(3); r(0)(SiC(3)) = 1.872(3); r(0)(C(2)C(4)) = 1.549(3); r(0)(C(3)C(5)) = 1.547(3); r(0)(C(4)C(5)) = 1.542(3); r(0)(SiF) = 1.598(3) and the angles in degrees are: [angle]CSiC = 96.7(5); [angle]SiC(2)C(4) = 103.6(5); [angle]SiC(3)C(5) = 102.9(5); [angle]C(2)C(4)C(5) = 108.4(5); [angle]C(3)C(5)C(4) = 108.1(5); [angle]F(6)Si(1)C(2) = 110.7(5); [angle]F(6)Si(1)C(3) = 111.6(5). The heavy atom ring parameters are compared to the corresponding r(s) parameters. Normal coordinate calculations with scaled force constants from MP2(full)/6-31G(d) calculations were carried out to predict the fundamental vibrational frequencies, infrared intensities, Raman activities, depolarization values, and infrared band contours. These experimental and theoretical results are compared to the corresponding quantities of some other five-membered rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号