首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huang HY  Chiu CW  Chen YC  Yeh JM 《Electrophoresis》2005,26(4-5):895-902
Microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic chromatograpy (MEKC) were compared for their abilities to separate and detect ten similar benzophenones, which are commonly used as UV filters in various plastic and cosmetic products. Sodium dodecyl sulfate (SDS) concentration and column temperature rarely affected separation resolution for MEEKC, but separation of benzophenones could be improved by changing the SDS concentration and column temperature for MEKC. Buffer pH and ethanol (organic modifier) were found to markedly influence the separation selectivity for both MEEKC and MEKC systems. In addition, a higher electric voltage improved the separation efficiency without a noticeable reduction in separation resolution for MEEKC, whereas it caused a poor separation resolution for the MEKC system.  相似文献   

2.
Yang X  Xia Y  Tao C  Liao Y  Zuo Y  Liu H 《Electrophoresis》2007,28(11):1744-1751
An investigation of the basic factors which govern the microemulsion EKC (MEEKC) and MEKC for the separation of four benzoylurea (BU) insecticides and their four analogs was carried out. In MEEKC, the separation of eight BU compounds was optimized by changing the microemulsion composition, such as concentration of SDS, octane, n-butanol, and isopropanol percentages, as well as capillary temperature. Separation optimization was also carried out for MEKC, showing that ACN and a high level of another additive gamma-CD were needed to achieve effective separation of these analytes. Although separation with baseline resolution was achieved by either MEEKC or MEKC methods, the separation selectivity resulting from the proposed MEEKC method was completely different from that of MEKC. In addition, analytical time in MEEKC was longer than that in MEKC, but in view of theoretical plate numbers, detection limits, and reproducibility, both methods were effective for the analysis of BU insecticides and their analogs.  相似文献   

3.
Li Q  Chang CK  Huie CW 《Electrophoresis》2005,26(17):3349-3359
The effects of organic solvents on the capillary electrophoresis (CE) separation of a number of important biological porphyrin methyl esters - six weakly basic, hydrophobic cyclic tetrapyrroles possessing two and four to eight methyl ester groups around the periphery of the porphyrin ring - were investigated in the mode of micellar electrokinetic chromatography (MEKC), microemulsion electrokinetic chromatography (MEEKC), and nonaqueous CE. In aqueous MEKC, partial separation of the six neutral porphyrin methyl esters was obtained with an organic modifier (acetonitrile) in the concentration range between 20 and 40%, in which sodium dodecyl sulfate (SDS) molecules might be present in the form of SDS micelles and/or SDS micelle-like aggregates. Relatively stable SDS micelles can be formed in nonaqueous MEKC using formamide as the separation medium, but the separation of the target analytes remained unsatisfactory. Improved resolution of all six porphyrin methyl esters was obtained using MEEKC with the running buffer consisting of 0.8% w/w n-heptane (oil phase), 2.25% w/w SDS and 1.0% w/w Brij 35 (mixed surfactant), 6.6% w/w 1-butanol (cosurfactant), and 30% v/v 2-propanol (second cosurfactant), but reproducibility in terms of peak areas for certain porphyrins (especially uroporphyrin I octamethyl ester) was found to be very poor. Best separation performances were achieved with nonaqueous CE separations in which the weakly basic porphyrin methyl esters were protonated under strongly acidic conditions (e.g., using 10 mM perchloric acid) in mixed organic solvents. For example, using a 50:50 mixture of methanol and acetonitrile as the separation medium, baseline separation of all six (positively charged) porphyrin methyl esters can be obtained within 3 min and the average precision (RSD, N = 13) in terms of migration time and peak area were 0.55 and 2.16%, respectively.  相似文献   

4.
In this study, microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic chromatography (MEKC) were compared for their abilities to separate and detect thirteen phenolic compounds (syringic acid, p-coumaric acid, vanillic acid, caffeic acid, gallic acid, 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, (+)-catechin, (-)-epigallocatechin, (-)-epicatechin gallate, (-)-epigallocatechin gallate, (-)-epicatechin, and (-)-gallocatechin), and two other ingredients (caffeine and theophylline) in teas and grapes. Separation of phenolic compounds was improved by changing the SDS concentration for MEEKC, but the SDS concentration rarely affected the resolution for MEKC. Organic modifier (acetonitrile or methanol) was found to markedly influence the resolution and selectivity for both MEEKC and MEKC systems. In addition, a higher voltage and a higher column temperature improved the separation efficiency without any noticeable reduction in resolution for MEEKC whereas they caused a poor resolution for the MEKC system. Although separations with baseline resolution were achieved by the optimized MEEKC and MEKC methods, the separation selectivity resulting from the proposed MEEKC method was completely different from that of MEKC.  相似文献   

5.
Microemulsion EKC (MEEKC) was developed for quantitative analysis of curcuminoids, such as curcumin (C), demethoxycurcumin (D), and bis-demethoxycurcumin (B). MEEKC separation of curcuminoids was optimized, and a change in resolution was explained using a modified equation for resolution in MEEKC without electroosmosis. The suitable MEEKC conditions for separation of curcuminoids were obtained to be the microemulsion buffer containing 50 mM phosphate buffer at pH 2.5, 1.1% v/v n-octane as oil droplets, 180 mM SDS as surfactant, 890 mM 1-butanol as cosurfactant, and 25% v/v 2-propanol as organic cosolvent; applied voltage of -15 kV; and separation temperature 25 degrees C. Achieved baseline resolution of C:D and D:B was obtained with R(s) -2.4 and analysis time within 18 min. In addition, high accuracy and precision of the method were obtained. This MEEKC method was used for quantitative determination of individual curcuminoids in medicinal turmeric capsules and powdered turmeric used as coloring additive in food, with simple sample preparation such as solvent extraction, dilution, and filtration, and without cleaning up by SPE.  相似文献   

6.
In this study, separation and determination of nine preservatives ranging from hydrophilic to hydrophobic properties, which are commonly used as additives in various pharmaceutical and cosmetic products, by micellar electrokinetic chromatograpy (MEKC) and microemulsion electrokinetic chromatography (MEEKC) were compared. The effect of temperature, buffer pH, and concentration of surfactant on separation were examined. In MEKC, the separation resolution of preservatives improved markedly by changing the sodium dodecyl sulfate concentration. Temperature and pH of running buffers were used mainly to shorten the magnitude of separation time. However, in order to detect all preservatives in a single run in a MEEKC system, a microemulsion of higher pH was needed. The separation resolution was improved dramatically by changing temperature, and a higher concentration of SDS was necessary for maintaining a stable microemulsion solution, therefore the separation of the nine preservatives in MEEKC took longer than in MEKC. An optimum MEKC method for separation of the nine preservatives was obtained within 9.0 min with a running buffer of pH 9.0 containing 20 mM SDS at 25 degrees C. A separation with baseline resolution was also obtained within 16 min using a microemulsion of pH 9.5 which composed of SDS, 1-butanol, and octane, and a shorter capillary column at 34 degrees C. Finally, the developed MEKC and MEEKC methods determined successfully preservatives in various cosmetic and pharmaceutical products.  相似文献   

7.
The retention factor (k) and retention index (I) of homologous series compounds such as alkylbenzenes (BZ), alkylaryl ketones, alkylbenzoates, and alkylparabens in microemulsion electrokinetic chromatography (MEEKC) with suppressed electroosmosis were investigated in a wide range of SDS concentrations ([SDS]), temperatures, and concentrations of organic cosolvents (phi). Using BZ as standards, the retention indices of other homologous series compounds were determined and they were found to be independent of [SDS] and temperature, while are dependent on the types and concentrations of organic cosolvents. The retention factor linearly increases with increasing [SDS], while linearly decreases with increasing temperature. The value of log k linearly decreases with increasing phi for methanol, ethanol, or ACN, while decreases by a second-degree polynomial with increasing phi for 2-propanol. Excellent agreement was found between the observed and predicted values of log k of analytes in MEEKC at given [SDS] and phi, where the predicted values were obtained from modified equations of the linear relationship of log k as functions of [SDS], the number of carbons, and phi. Therefore, both k and I can be used for peak identification of homologous series compounds.  相似文献   

8.
Tao Wen  Guoan Luo  Jian Wang  Bo Yao  Jun Zhu 《Talanta》2007,71(2):854-860
Microemulsion electrokinetic chromatography (MEEKC) and solvent modified micellar electrokinetic chromatography (MEKC) were investigated with the goal of the rapid separation of complex heroin and amphetamine samples. The rapid simultaneous separation of 17 species of heroin, amphetamine and their basic impurities and adulterants was performed within about 10 min using MEEKC for the first time, whereas solvent modified MEKCs were unable to resolve all the components. The comparisons between MEEKC and solvent modified MEKC proved internal lipophilic organic phase in microemulsions played an important role in improving the separation performance with respect to efficiency. However, the role of internal lipophilic organic phase in MEEKC was disgusted at high concentrations of cosurfactant, and the separations of MEEKC and 1-butanol modified MEKC became similar at high concentrations of 1-butanol. The evaluation of reproducibility, linearity and detection limit of optimized MEEKC method provided good results for all the analytes investigated, thus allowing its application to real controlled drug preparation analysis.  相似文献   

9.
A microemulsion electrokinetic chromatographic (MEEKC) method was developed for the separation of six catechins, specific marker phytochemicals of Cistus species. The MEEKC method involved the use of sodium dodecyl sulfate (SDS) as surfactant, heptane as organic solvent and butan-1-ol as co-solvent. In order to have a better stability of the studied catechins, the separation was performed under acidic conditions (pH 2.5 phosphate buffer). The effects of SDS concentration and of the amount of organic solvent and co-solvent on the analyte resolution were evaluated. The optimized conditions (heptane 1.36% (w/v), SDS 2.31% (w/v), butan-1-ol 9.72% (w/v) and 50 mM sodium phosphate buffer (pH 2.5) 86.61% (w/v)) allowed a useful and reproducible separation of the studied analytes to be achieved. These conditions provided a different separation profile compared to that obtained under conventional micellar electrokinetic chromatography (MECK) using SDS. The method was validated and applied to the determination of catechin and gallocatechin in lyophilized extracts of Cistus incanus and Cistus monspeliensis.  相似文献   

10.
Cao J  Chen J  Yi L  Li P  Qi LW 《Electrophoresis》2008,29(11):2310-2320
Oil-in-water (O/W) and water-in-oil (W/O) MEEKC were compared for their abilities to separate and detect eight phenolic acids and five diterpenoids in Radix et Rhizoma Salviae Miltiorrhizae (RRSM). The effects of oil type and concentration, organic modifier, SDS, and buffer concentration on separation were examined in order to optimize the two methods. Oil contents and organic modifier were found to markedly influence the separation selectivity for both O/W and W/O systems. SDS concentration rarely affected separation resolution for O/W MEEKC, and separation of eight phenolic acids and five diterpenoids could be improved by changing the buffer concentration for W/O MEEKC. A highly efficient O/W MEEKC separation method, where the 13 compounds were separated with baseline resolution, was achieved by using a microemulsion solution of pH 8.0 containing 0.6% cyclohexane, 3.0% SDS, 6.0% 1-butanol, and 3.0% ACN. The W/O MEEKC was unable to resolve all the components. In addition, the analytic time in O/W MEEKC was shorter than that in W/O MEEKC. Finally, the developed O/W MEEKC method was successfully applied to determine analytic compounds in RRSM samples.  相似文献   

11.
A novel microemulsion electrokinetic chromatography (MEEKC) method for separating and determining two sesquoterpene lactones, alantolactone (AL) and isoalantolactone (IAL), in Radix inulae and Liuwei Anxian San has been developed. The effects of several important factors such as internal organic phases, concentration of microemulsion, concentration of acetonitrile, injection time and running voltage were systematically investigated to determine the optimum conditions. The optimum microemulsion system was composed of n-hexane (0.32% w/w), SDS (1.24% w/w), 1-butanol (2.64% w/w), acetonitrile (10% w/w) and 10 mm sodium tetraborate buffer (85.80% w/w, pH 9.2). The applied voltage was 20 kV. The analytes were detected at 214 nm. Regression equations revealed linear relationships (correlation coefficients 0.9950 for AL and 0.9946 for IAL) between the peak area of each analyte and the concentration. The limits of detection (defined as a signal-to-noise ratio of about 3) were approximately 0.45 microg/mL for AL and 0.56 microg/mL for IAL. The levels of the analytes were successfully determined with recoveries ranging from 98.2 to 104.3%. Furthermore, a simple and effective extraction method, with methanol in an ultrasonic water bath for 60 min, was used for sample preparing. Also, MEEKC was compared with micellar electrokinetic chromatography (MEKC) and shown better separation results.  相似文献   

12.
A comparison between chiral cyclodextrin‐modified microemulsion electrokinetic chromatography (CD‐MEEKC) and cyclodextrin‐modified micellar electrokinetic chromatography (CD‐MEKC) for the enantiomeric separation of esbiothrin was carried out. For both methods, the separation conditions were optimized by varying CD types and concentration, running buffer pH and compositions, organic modifiers, and temperature. The optimal CD‐MEEKC conditions were 0.8% n‐heptane, 2.3% SDS, 6.6% n‐butanol, 90.3% 10 mM sodium tetraborate containing 3% (w/v, the ratio of CD mass to microemulsion volume) methyl‐β‐cyclodextrin, pH 10, 25°C. The optimized CD‐MEKC conditions were 3.3% SDS, 96.7% 10 mM sodium tetraborate containing 5% (w/v) β‐CD, pH 10, 25°C. The difference in physicochemical properties of the buffer and CDs resulted in different optimal CD type. The competitive distribution between the microemulsion (or micelle) and chiral CD contributed to the chiral separation. Both methods provided excellent separation (Rs ~? 3) with similar migration time (ca. 15 min). CD‐MEEKC provided higher separation efficiencies (>300000) than CD‐MEKC (>200000). The LODs for CD‐MEEKC and CD‐MEKC were 4.7 μg/mL and 3.2 μg/mL, respectively. The RSDs of migration time and peak area for CD‐MEEKC were slightly higher than for CD‐MEKC. Both the demonstrated CD‐MEEKC and CD‐MEKC methods provided high efficiencies, low LODs, and reproducible enantioseparations of esbiothrin.  相似文献   

13.
A new hexane-in-water microemulsion was investigated as buffer in microemulsion EKC (MEEKC). At difference with other microemulsions, the addition of cosurfactant was not necessary to stabilize the microemulsion. The proposed microemulsion was successfully used to achieve electrophoretic separation of seven antibiotics including nitroimidazoles, cephapirin and tetracyclines. Selectivity and separation efficiency achieved in MEEKC were compared with MEKC. MEEKC technique proved to be more efficient than MEKC for performing the separation of the analytes and the presence of microemulsions was found to be critical to achieve the separation of tetracyclines. The proposed microemulsion also points out that solvents with high volatility, such as hexane, can be stabilized and used as a microemulsion of SDS.  相似文献   

14.
A microemulsion electrokinetic chromatographic (MEEKC) method was developed for the separation of six catechins, specific marker phytochemicals of Cistus species. The MEEKC method involved the use of sodium dodecyl sulfate (SDS) as surfactant, heptane as organic solvent and butan-1-ol as co-solvent. In order to have a better stability of the studied catechins, the separation was performed under acidic conditions (pH 2.5 phosphate buffer). The effects of SDS concentration and of the amount of organic solvent and co-solvent on the analyte resolution were evaluated. The optimized conditions (heptane 1.36% (w/v), SDS 2.31% (w/v), butan-1-ol 9.72% (w/v) and 50 mM sodium phosphate buffer (pH 2.5) 86.61% (w/v)) allowed a useful and reproducible separation of the studied analytes to be achieved. These conditions provided a different separation profile compared to that obtained under conventional micellar electrokinetic chromatography (MECK) using SDS. The method was validated and applied to the determination of catechin and gallocatechin in lyophilized extracts of Cistus incanus and Cistus monspeliensis.  相似文献   

15.
Equations and theoretical models for MEKC separation selectivity (α(MEKC) ) were established to explain a change in separation and electrophoretic mobility order of fully charged analytes, in which α(MEKC) is related to the dimensionless values of mobility selectivity in CZE (α(CZE)) and retention selectivity (α(k)) in MEKC, and where α(CZE) and α(k) are defined as the ratio of electrophoretic mobility in CZE and the ratio of retention factor (k) in MEKC for two charged analytes, respectively. Using four alkylparabens as test analytes, excellent agreement was found between the observed α(MEKC) and the proposed α(MEKC) models of test analytes in MEKC over a wide range of SDS concentrations and values of k. For example, in comparison with CZE separation of charged analytes, MEKC separation can enhance separation selectivity up to the maximum value when the selectivity ratio (ρ) is greater than 1.0 (ρ=α(k)/α(CZE)), while lower separation selectivity is obtained with ρ<1.0 (α(CZE) >α(k) >1).  相似文献   

16.
Microemulsion EKC (MEEKC) was used for the determination of ketorolac and its three impurities. The microemulsion system was optimized, for the first time in the literature, using a multivariate strategy involving a mixture design. A 13-run experimental plan covering an experimental domain defined by the components aqueous phase (10 mM borate buffer pH 9.2), oil phase (n-heptane) and surfactant/cosurfactant (SDS/n-butanol) was carried out. Good results were obtained with all microemulsions tested considering as responses analysis time and resolution, and according to the desirability function the best microemulsion system was constituted by 90.0% 10 mM borate buffer, 2.0% n-heptane, 8.0% of SDS/n-butanol in 1:2 ratio. Finally, with the aim of reducing analysis time, a response surface study was carried out in the experimental domain defined by the process variables temperature and voltage and the best values were 17 degrees C and -17 kV, respectively. Applying the optimised conditions, a complete resolution among the analytes was obtained in about 3 min using the short-end injection method. The method was validated for both drug substances and drug product and was applied to the quality control of ketorolac in coated tablets. A comparison of MEEKC, MEKC and CEC for assaying ketorolac and its related substances has been made.  相似文献   

17.
Melin V  Perrett D 《Electrophoresis》2004,25(10-11):1503-1510
Separations of human urine by microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic capillary chromatography (MEKC) with respect to resolution, migration times and efficiencies were optimized and compared. The optimised MEEKC and MEKC methods were simple and fast, both of which are excellent characteristics for the complex separations required in clinical and biomedical studies. However, resolution in MEKC was significantly greater than in MEEKC although migration times were 30% faster for the optimised MEEKC method. In addition, a faster analysis method (short-end injection) specifically for routine screening purposes was also investigated. With both MEEKC and MEKC modes, this provided short separations (less than 4 min for urine) with no major compromise in resolution. In conclusion, we found that MEEKC offered no real advantage over MEKC for urine analysis.  相似文献   

18.
The migration behaviour of isoquinoline, quinoline, and methyl derivatives of quinoline in different capillary electrophoretic modes has been systematically investigated. Optimised separation conditions were established by varying the key parameters (solvent, pH, temperature, surfactant concentration, core phase) for aqueous and non‐aqueous capillary zone electrophoresis (NACE), micellar electrokinetic chromatography (MEKC) with anionic or non‐ionic micelles (SDS, Brij 35), and microemulsion electrokinetic chromatography (MEEKC) with charged or uncharged microemulsion droplets. A separation of all quinolines could be achieved by MEEKC with charged droplets, by MEKC or by formamide‐based NACE. Comparing the separations with respect to separation selectivity, substantial changes in migration order could be observed between the different techniques. Regarding separation efficiency, the number of theoretical plates and limits of detection (LOD) have been compared. The best LODs were achieved using SDS as surfactant in MEKC, followed by MEEKC.  相似文献   

19.
建立了微乳液毛细管电动色谱快速测定解热镇痛药中非那西丁、氨基比林和咖啡因的新方法。采用由乙酸乙酯-十二烷基硫酸钠(SDS)-正丁醇-硼砂缓冲液组成的微乳液体系,以氯霉素为内标,3种有效成分在2.5 min内完成分离,峰面积相对标准偏差(RSD)在1.2%~1.6%之间,回收率在95.6%~104.0%之间。实验考察了缓冲溶液的浓度、pH值、SDS浓度以及助表面活性剂的种类、含量对分离测定的影响。该法可用于实际样品分析。  相似文献   

20.
Gong S  Bo T  Huang L  Li KA  Liu H 《Electrophoresis》2004,25(7-8):1058-1064
A mixture of six biphenyl nitrile compounds and three related substances with high hydrophobicity and similar structures was successfully separated by microemulsion electrokinetic chromatography (MEEKC) within 30 min. The microemulsion system contained 100 mM sodium dodecyl sulfate (SDS), 80 mM sodium cholate (SC), 0.81% v/v heptane, 7.5% v/v n-butanol, 10% v/v acetonitrile, and 10 mM borate. The addition of SC, organic modifiers, sample preparation, and temperature all showed remarkable effects on the separation. The capacity factor (k) was calculated by using dodecyl benzene as the marker for microemulsion, and the calculated partition coefficient log P(o/w) of the solutes was in the range of 3.35-7.38. The log k values matched well with the log P(o/w) with a correlation coefficient of 0.96. In addition, the linear correlation coefficients of each compound between peak area and concentration were from 0.996 to 0.998 with the repeatability RSD value < 1.2% for migration time and < 4.8% for peak area, and the highest theoretic plate number was > 586000. MEEKC was compared with micellar electrokinetic chromatography (MEKC) indicating that the former method is more suitable for this separation and can be used for the quality control of biphenyl nitrile compounds in the synthesis of liquid crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号