首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We give an example of a spacetime having an infinite thin rotating cylindrical shell constituted by a charged perfect fluid as a source. As the interior of the shell the Bonnor–Melvin universe is considered, while its exterior is represented by the Datta–Raychaudhuri spacetime. We discuss the energy conditions and we show that our spacetime contains closed timelike curves. Trajectories of charged test particles both inside and outside the cylinder are also examined. An expression for the angular velocity of a circular motion inside the cylinder is given.  相似文献   

2.
We review the relation between AdS spacetime in 1 $+$ 2 dimensions and the BTZ black hole (BTZbh). Later we show that a ground state in AdS spacetime becomes a thermal state in the BTZbh. We show that this is true in the bulk and in the boundary of AdS spacetime. The existence of this thermal state is tantamount to say that the Unruh effect exists in AdS spacetime and becomes the Hawking effect for an eternal BTZbh. In order to make this we use the correspondence introduced in algebraic holography between algebras of quasi-local observables associated to wedges and double cones regions in the bulk of AdS spacetime and its conformal boundary respectively. Also we give the real scalar quantum field as a concrete heuristic realization of this formalism.  相似文献   

3.
4.
We study some aspects of Maldacena's large-N correspondence between superconformal gauge theory on the D3-brane and maximal supergravity on AdS by introducing macroscopic strings as heavy (anti-) quark probes. The macroscopic strings are semi-infinite Type IIB strings ending on a D3-brane world-volume. We first study deformation and fluctuation of D3-branes when a macroscopic BPS string is attached. We find that both dynamics and boundary conditions agree with those for the macroscopic string in anti-de Sitter supergravity. As a by-product we clarify how Polchinski's Dirichlet and Neumann open string boundary conditions arise dynamically. We then study the non-BPS macroscopic string–anti-string pair configuration as a physical realization of a heavy quark Wilson loop. We obtain the static potential from the supergravity side and find that the potential exhibits non-analyticity of the square-root branch cut in the 't Hooft coupling parameter. We put forward non-analyticity as a prediction for large-N gauge theory in the strong 't Hooft coupling limit. By turning on the Ramond–Ramond zero-form potential, we also study the vacuum angle dependence of the static potential. We finally discuss the possible dynamical realization of the heavy N-prong string junction and of the large-N loop equation via a local electric field and string recoil thereof. Throughout comparisons of the AdS–CFT correspondence, we find that a crucial role is played by “geometric duality” between the UV and IR scales in directions perpendicular to the D3-brane and parallel ones, explaining how the AdS spacetime geometry emerges out of four-dimensional gauge theory at strong coupling. Received: 21 September 2001 / Published online: 12 November 2001  相似文献   

5.
We prove two theorems, announced in [6], for static spacetimes that solve Einstein's equation with negative cosmological constant. The first is a general structure theorem for spacetimes obeying a certain convexity condition near infinity, analogous to the structure theorems of Cheeger and Gromoll for manifolds of non-negative Ricci curvature. For spacetimes with Ricci-flat conformal boundary, the convexity condition is associated with negative mass. The second theorem is a uniqueness theorem for the negative mass AdS soliton spacetime. This result lends support to the new positive mass conjecture due to Horowitz and Myers which states that the unique lowest mass solution which asymptotes to the AdS soliton is the soliton itself. This conjecture was motivated by a nonsupersymmetric version of the AdS/CFT correspondence. Our results add to the growing body of rigorous mathematical results inspired by the AdS/CFT correspondence conjecture. Our techniques exploit a special geometric feature which the universal cover of the soliton spacetime shares with familiar ``ground state' spacetimes such as Minkowski spacetime, namely, the presence of a null line, or complete achronal null geodesic, and the totally geodesic null hypersurface that it determines. En route, we provide an analysis of the boundary data at conformal infinity for the Lorentzian signature static Einstein equations, in the spirit of the Fefferman-Graham analysis for the Riemannian signature case. This leads us to generalize to arbitrary dimension a mass definition for static asymptotically AdS spacetimes given by Chruciel and Simon. We prove equivalence of this mass definition with those of Ashtekar-Magnon and Hawking-Horowitz.  相似文献   

6.
In this study, the gravitational decoupling approach via extended geometric deformation is utilized to generate analytical black hole solutions owing to its simplicity and effectiveness. Considering the external fields surrounding Schwarzschild AdS black holes, we derive hairy black hole solutions in asymptotic AdS spacetime, satisfying the strong and dominant energy conditions. Moreover, we find that if the black hole spacetime is a fluid system, the fluid under each of these conditions is anisotropic.  相似文献   

7.
We use Weyl transformations between the Minkowski spacetime and dS/AdS spacetime to show that one cannot well define the electrodynamics globally on the ordinary conformal compactification of the Minkowski spacetime (or dS/AdS spacetime), where the electromagnetic field has a sign factor (and thus is discountinuous) at the light cone. This problem is intuitively and clearly shown by the Penrose diagrams, from which one may find the remedy without too much difficulty. We use the Minkowski and dS spacetimes together to cover the compactified space, which in fact leads to the doubled conformal compactification. On this doubled conformal compactification, we obtain the globally well-defined electrodynamics.  相似文献   

8.
The Ryu–Takayanagi formula provides the entanglement entropy of quantum field theory as an area of the minimal surface (Ryu–Takayanagi surface) in a corresponding gravity theory. There are some attempts to understand the formula as a flow rather than as a surface. In this paper, we consider null rays emitted from the AdS boundary and construct a flow representing the causal holographic information. We present a sufficient and necessary condition that the causal information surface coincides with Ryu–Takayanagi surface. In particular, we show that, in spherical symmetric static spacetimes with a negative cosmological constant, wave fronts of null geodesics from a point on the AdS boundary become extremal surfaces and therefore they can be regarded as the Ryu–Takayanagi surfaces. In addition, from the viewpoint of flow, we propose a wave optical formula to calculate the causal holographic information.  相似文献   

9.
The AdS/Ricci-flat (AdS/RF) correspondence is a map between families of asymptotically locally AdS solutions on a torus and families of asymptotically flat spacetimes on a sphere. The aim of this work is to perturbatively extend this map to general AdS and asymptotically flat solutions. A prime application for such map would be the development of holography for Minkowski spacetime. In this paper we perform a Kaluza–Klein (KK) reduction of AdS on a torus and of Minkowski on a sphere, keeping all massive KK modes. Such computation is interesting on its own, as there are relatively few examples of such explicit KK reductions in the literature. We perform both KK reductions in parallel to illustrate their similarity. In particular, we show how to construct gauge invariant variables, find the field equations they satisfy, and construct a corresponding effective action. We further diagonalize all equations and find their general solution in closed form. Surprisingly, in the limit of large dimension of the compact manifolds (torus and sphere), the AdS/RF correspondence maps individual KK modes from one side to the other. In a sequel of this paper we will discuss how the AdS/RF maps acts on general linear perturbations.  相似文献   

10.
For (n+1)-dimensional asymptotically anti-de Sitter (AdS) spacetimes which have holographic duals on their n-dimensional conformal boundaries, we show that the imposition of causality on the boundary theory is sufficient to prove positivity of mass for the spacetime when n> or =3, without the assumption of any local energy condition. We make crucial use of a time-delay formula relating the Ashtekar-Magnon mass of the spacetime to the time delay of a bulk null curve relative to that of a boundary null geodesic. We also discuss holographic causality for the negative mass AdS soliton and its implications for the positive energy conjecture of Horowitz and Myers.  相似文献   

11.
It is demonstrated that the Melvin universe representing the spacetime with a strong ‘homogeneous’ electric field can by obtained from the spacetime of two accelerated charged black holes by a suitable limiting procedure. The behavior of various invariantly defined geometrical quantities in this limit is also studied.  相似文献   

12.
We present an exact three-dimensional massive Kiselev AdS black hole solution. This Kiselev black hole is neither perfectly fluid, nor is it the quintessential solution, but the BTZ black hole modified by the anisotropic matter. This black hole possesses an essential singularity at its radial origin and a single horizon whose radius will increase monotonically when the parameter of the anisotropic matter field ω decreases. We calculate all thermodynamic quantities and find that the first law of thermodynamics of this massive Kiselev AdS black hole can be protected, while the consistent Smarr formula is only held in the extended thermodynamic phase space. After examining the sign of free energy, we conclude that there is no Hawking-Page transition since the massive Kiselev AdS black hole phase is always thermodynamically favored. Moreover, we study the phase transition between the Kiselev AdS black hole and BTZ black hole by considering the matchings for their temperature. We find that the Kiselev AdS black hole is still a thermodynamically more preferred phase, because it always has a smaller amount of free energy than the BTZ black hole, which seems to indicate that the anisotropic matter field may emerge naturally in BTZ black hole spacetime under some thermal fluctuations. We also show a first order phase transition between the Kiselev AdS black hole phase with -1w -1/2 and the black hole phase with -1/2w0. As the Kiselev AdS black hole has some notable features on the phase transition of black holes in three dimensions, it provides important clues to further investigate these both surprising and similar behaviors in four and higher dimensions.  相似文献   

13.
We study the proposal that a de Sitter (dS) universe with an Anti-de Sitter (AdS) bubble can be replaced by a dS universe with a boundary CFT. To explore this duality, we consider incident gravitons coming from the dS universe through the bubble wall into the AdS bubble in the original picture. In the dual picture, this process has to be identified with the absorption of gravitons by CFT matter. We have obtained a general formula for the absorption probability in general d+1 spacetime dimensions. The result shows the different behavior depending on whether spacetime dimensions are even or odd. We find that the absorption process of gravitons from the dS universe by CFT matter is controlled by localized gravitons (massive bound state modes in the Kaluza-Klein decomposition) in the dS universe. The absorption probability is determined by the effective degrees of freedom of the CFT matter and the effective gravitational coupling constant which encodes information of localized gravitons. We speculate that the dual of (d+1)-dimensional dS universe with an AdS bubble is also dual to a d-dimensional dS universe with CFT matter.  相似文献   

14.
In this paper we discuss the Fermi–Walker transport of vectors along orbits in cosmic string and Schwarzschild–AdS spacetimes. We analyze the influence of acceleration on these holonomies. An effect similar to Thomas precession is observed within the process of Fermi–Walker transport along these circular orbits which are studied in the limit of vanishing cosmological constant in Schwarzschild–AdS case; also we obtain Fermi–Walker transport in a Schwarzschild background. In the case of a Schwarzschild spacetime, we analyze the quantized band holonomy invariance. In the limit of zero acceleration we recover the well-known results for holonomy matrix obtained by parallel transport in all these spacetimes.  相似文献   

15.
In this paper we consider the bouncing braneworld scenario, in which the bulk is given by a five-dimensional AdS black hole spacetime with matter field confined in a 3D brane. Exploiting the CFT/FRW-cosmology relation, we consider the self-gravitational corrections to the first Friedmann-like equation which is the equation of the brane motion. The self-gravitational corrections act as a source of stiff matter contrary to standard FRW cosmology, where the charge of the black hole plays this role. Then we study the stability of solutions with respect to homogeneous and isotropic perturbations. Specifically, if we do not consider the self-gravitational corrections, the AdS black hole with zero ADM mass and open horizon is an attractor, while, if we consider the self-gravitational corrections, the AdS black hole with zero ADM mass and flat horizon is a repeller.  相似文献   

16.
We study massless and massive Hawking radiations on a two-dimensional AdS spacetime. For the massless case, the quantum stress-energy tensor of a massless scalar field on the AdS background is calculated, and the expected null radiation is obtained. However, for the massive case, the scattering analysis is performed in order to calculate the absorption and reflection coefficients which are related to statistical Hawking temperature. On the contrary to the massless case, we obtain a nonvanishing massive radiation.  相似文献   

17.
The stability of physical systems depends on the existence of a state of least energy. In gravity, this is guaranteed by the positive energy theorem. For topological reasons, this fails for nonsupersymmetric Kaluza-Klein compactifications, which can decay to arbitrarily negative energy. For related reasons, this also fails for the anti-de Sitter (AdS) soliton, a globally static, asymptotically toroidal Lambda<0 spacetime with negative mass. Nonetheless, arguing from the AdS conformal field theory (AdS/CFT) correspondence, Horowitz and Myers proposed a new positive energy conjecture, which asserts that the AdS soliton is the unique state of least energy in its asymptotic class. We give a new structure theorem for static Lambda<0 spacetimes and use it to prove uniqueness of the AdS soliton. Our results offer significant support for the new positive energy conjecture and add to the body of rigorous results inspired by the AdS/CFT correspondence.  相似文献   

18.
We study a five-dimensional spacetime admitting, in the presence of torsion, a non-degenerate conformal Killing–Yano 2-form which is closed with respect to both the usual exterior differentiation and the exterior differentiation with torsion. Furthermore, assuming that the torsion is closed and co-closed with respect to the exterior differentiation with torsion, we prove that such a spacetime is the only spacetime given by the Chong–Cvetič–Lü–Pope solution for stationary, rotating charged black holes with two independent angular momenta in five-dimensional minimal gauged supergravity.  相似文献   

19.
We show the existence of D=4D=4 non-Abelian solutions approaching asymptotically a dilatonic Melvin spacetime background. An exact solution generalizing the Chamseddine–Volkov soliton for a nonzero external U(1) magnetic field is also reported.  相似文献   

20.
The phenomenon of gyroscopic precession in the Ernst spacetime is studied within the framework of the Frenet-Serret formalism. General formulae are obtained for circular orbits. At the same time general relativistic analogues of inertial forces such as gravitational and centrifugal forces are also investigated in the Ernst spacetime. Reversal of gyroscopic precession as well as centrifugal force is considered at the circular photon orbits. These phenomena are examined in the Melvin universe as a special case of the Ernst spacetime by setting the mass parameter equal to zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号