首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
There are various reversed‐phase stationary phases that offer significant differences in selectivity and retention. To investigate different reversed‐phase stationary phases (aqueous stable C18, biphenyl, pentafluorophenyl propyl, and polar‐embedded alkyl) in an automated fashion, commercial software and associated hardware for mobile phase and column selection were used in conjunction with liquid chromatography and a triple quadrupole mass spectrometer detector. A model analyte mixture was prepared using a combination of standards from varying classes of analytes (including drugs, drugs of abuse, amino acids, nicotine, and nicotine‐like compounds). Chromatographic results revealed diverse variations in selectivity and peak shape. Differences in the elution order of analytes on the polar‐embedded alkyl phase for several analytes showed distinct selectivity differences compared to the aqueous C18 phase. The electron‐rich pentafluorophenyl propyl phase showed unique selectivity toward protonated amines. The biphenyl phase provided further changes in selectivity relative to C18 with a methanolic phase, but it behaved very similarly to a C18 when an acetonitrile‐based mobile phase was evaluated. This study shows the value of rapid column screening as an alternative to excessive mobile phase variation to obtain suitable chromatographic settings for analyte separation.  相似文献   

2.
Ion exchange chromatography, an alternative to reversed‐phase (RP) chromatography, is described in this paper. We aimed to obtain optimal conditions for the separation of basic drugs because silica‐based RP stationary phases show silanol effect and make the analysis of basic analytes hardly possible. The retention, separation selectivity, symmetry of peaks and system efficiency were examined in different eluent systems containing different types of buffers at acidic pH and with the addition of organic modifiers: methanol and acetonitrile. The obtained results reveal a large influence of the salt cation used for buffer preparation and the type of organic modifier on the retention behavior of the analytes. These results were also compared with those obtained on an XBridge C18 column. The obtained results demonstrated that SCX stationary phases can be successfully used as alternatives to C18 stationary phases in the separation of basic compounds. The most selective and efficient chromatographic systems were applied for the quantification of some psychotropic drugs in fortified human serum samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The potential of enhanced‐fluidity liquid chromatography, a subcritical chromatography technique, in mixed‐mode hydrophilic interaction/strong cation‐exchange separations is explored, using amino acids as analytes. The enhanced‐fluidity liquid mobile phases were prepared by adding liquefied CO2 to methanol/water mixtures, which increases the diffusivity and decreases the viscosity of the mixture. The addition of CO2 to methanol/water mixtures resulted in increased retention of the more polar amino acids. The “optimized” chromatographic performance (achieving baseline resolution of all amino acids in the shortest amount of time) of these methanol/water/CO2 mixtures was compared to traditional acetonitrile/water and methanol/water liquid chromatography mobile phases. Methanol/water/CO2 mixtures offered higher efficiencies and resolution of the ten amino acids relative to the methanol/water mobile phase, and decreased the required isocratic separation time by a factor of two relative to the acetonitrile/water mobile phase. Large differences in selectivity were also observed between the enhanced‐fluidity and traditional liquid mobile phases. A retention mechanism study was completed, that revealed the enhanced‐fluidity mobile phase separation was governed by a mixed‐mode retention mechanism of hydrophilic interaction/strong cation‐exchange. On the other hand, separations with acetonitrile/water and methanol/water mobile phases were strongly governed by only one retention mechanism, either hydrophilic interaction or strong cation exchange, respectively.  相似文献   

4.
The solubilities of 1alkyl‐3‐methylimidazolium chloride, [Cnmim][Cl], where n=4, 8, 10, and 12, in 1octanol and water have been measured by a dynamic method in the temperature range from 270 to 370 K. The solubility data was used to calculate the 1octanol/water partition coefficients as a function of temperature and alkyl substituent. The melting point, enthalpies of fusion, and enthalpies of solid–solid phase transitions were determined by differential scanning calorimetry, DSC. The solubility of [Cnmim][Cl], where n=10 or 12 in 1octanol is comparable and higher than that of [C4mim][Cl] in 1octanol. Liquid 1n‐octyl‐3‐methylimidazolium chloride, [C8mim][Cl], is not miscible with 1octanol and water, consequently, the liquid–liquid equilibrium, LLE was measured in this system. The differences between the solubilities in water for n=4 and 12 are shown only in α1 and γ1 solid crystalline phases. Additionally, the immiscibility region was observed for the higher concentration of [C10mim][Cl] in water. The intermolecular solute–solvent interaction of 1butyl‐3‐methylimidazolium chloride with water is higher than for other 1alkyl‐3‐methylimidazolium chlorides. The data was correlated by means of the UNIQUAC ASM and two modified NRTL equations utilizing parameters derived from the solid–liquid equilibrium, SLE. The root‐mean‐square deviations of the solubility temperatures for all calculated data are from 1.8 to 7 K and depend on the particular equation used. In the calculations, the existence of two solid–solid first‐order phase transitions in [C12mim][Cl] has also been taken into consideration. Experimental partition coefficients (log P) are negative at three temperatures; this is evidence for the possible use of these ionic liquids as green solvents.  相似文献   

5.
The lipophilicities of 22 selected sunscreens, preservatives, and vitamins used in topical skin products were measured by thin‐layer chromatography. Lipophilicity was calculated in silico from the sunscreen molecular structures and compared to the experimental octanol/water partition coefficients found in the literature. The retention of the compounds was investigated on an RP‐18 stationary phase with mobile phases consisting of water and one of six organic modifiers (dioxane, tetrahydrofuran, acetone, acetonitrile, methanol, and dimethylformamide) at different concentrations. The theoretical lipophilicities were calculated by several computational algorithms and the results of these calculations were compared using cluster analysis. The results showed that two out of the six investigated organic modifiers (dioxane and acetone) may be used to estimate the octanol/water partition coefficients of highly lipophilic compounds having lipophilicities that cannot be measured directly by the shake‐flask method.  相似文献   

6.
The selectivity of a suitable organic solvent is key for extraction in liquid‐phase microextraction experiments. Nevertheless, the screening process remains a daunting task. Our research aimed to study the relationship between extraction efficiency and extraction solvents, analytes, and finally select the appropriate extraction solvent. In the present article, β‐blockers and six extraction solvents were chosen as the models and hollow‐fiber liquid‐phase microextraction was conducted. The relationship was built by statistical analysis on the data. Factors affecting extraction efficiency including the logarithms of the octanol/water partition coefficient (logPo/w) of analytes, acid dissociation constants, the logarithms of the octanol/water partition coefficient of solvents and pH of the sample solution were investigated. The results showed that a low water solubility of extraction solvent is the foundation to ensure higher extraction efficiency. Moreover, when ΔlogPo/w > 0, a higher extraction efficiency is observed at lower ΔlogPo/w, on the contrary, when ΔlogPo/w < 0, extraction efficiency is higher as the absolute value of ΔlogPo/w becomes greater. Finally, the relationship between enrichment factor and extraction solvents, analytes was established and a helpful guidance was provided for the selection of an optimal solvent to obtain the best extraction efficiency by liquid‐phase microextraction.  相似文献   

7.
Hydrophilic interaction liquid chromatography is a separation technique suitable for the separation of moderately and highly polar compounds. Various stationary phases (SPs) for hydrophilic interaction liquid chromatography are commercially available. While the SPs based on the same type of ligand are available from different providers, they can display a distinct retention characteristics and separation selectivity. The current work is focused on characterization and comparison of the separation systems of two amide‐based HPLC columns from two producers, i.e. XBridge Amide column and TSK gel Amide‐80 column. Several characterization procedures (tests) were used to investigate the differences between these columns. The chromatographic behavior of selected analytes indicates that multimodal interactions are responsible for retention and separation on these columns. Multiple testing approaches were used in order to reveal subtle differences between the SPs. Both amide‐based columns showed certain differences in retention, selectivity, and plate counts. Based on the tests used in this study, we conclude that the investigated columns provide a different degree of H‐bonding interactions.  相似文献   

8.
A three‐phase hollow fiber liquid‐phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1‐octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 μL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H3PO4, pH 3.0; organic solvent, 1‐octanol; acceptor solution, 40 μL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05–0.30 mg/L with r2>0.9900 and LODs were in the range of 0.01–0.04 mg/L with RSDs of 1.25–2.32%. Excellent enrichment factors of up to 398‐folds were obtained. It was found that the partition coefficient (Ka/d) values were high for 2‐nitrophenol, 3‐nitrophenol, 4‐nitrophenol, 2,4‐dinitrophenol and 2,6‐dinitrophenol and that the individual partition coefficients (Korg/d and Ka/org) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.  相似文献   

9.
10.
Separation of the two enantiomers of racemic α‐ and β‐amino acids on two ligand exchange chiral stationary phases (CSPs) prepared previously by covalently bonding sodium N‐((S)‐1‐hydroxymethy‐3‐methylbutyl)‐N‐undecylaminoacetate or sodium N‐((R)‐2‐hydroxy‐1‐phenylethyl)‐N‐undecylaminoacetate on silica gel was studied with variation of the organic modifier (methanol) concentration in the aqueous mobile phase. In particular, the variation of retention factors with changing organic modifier concentration in the aqueous mobile phase was found to be strongly dependent on both the analyte lipophilicity and the stationary phase lipophilicity. In general, the retention factors of relatively lipophilic analytes on relatively lipophilic CSPs tend to increase with increasing organic modifier concentration in the aqueous mobile phases while those of less lipophilic or hydrophilic analytes tend to increase. However, only highly lipophilic analytes show decreasing retention factors with increasing organic modifier concentration in the aqueous mobile phase on less lipophilic CSPs. The contrasting retention behaviors on the two CSPs were rationalized by the balance of the two competing interactions, viz. hydrophilic interaction of analytes with polar aqueous mobile phase and the lipophilic interaction of analytes with the stationary phase.  相似文献   

11.
A study of ten silica-based stationary phases and gradient elution conditions to separate dietary folates by reversed-phase HPLC was performed. Alkyl-bonded stationary phases (both conventional and alternative) were found to be the most promising for the separation of different folate monoglutamates in terms of selectivity and peak shape. These phases were better than phenyl-bonded phases which lacked selectivity when separating 10-formyl-folic acid and 5-formyl-tetrahydrofolate. Polar-bonded (cyano) stationary phase showed similar retention characteristics as the conventional alkyl-bonded phases, but ranked below those in terms of peak shape. Overall, alternative stationary phases exhibited slightly higher retention of late-eluted folates and greater retention variability for early-eluting tetrahydrofolate and 5-methyl-tetrahydrofolate. Best selectivity was achieved on alternative polar endcapped Aquasil C18 followed by conventional Synergy MAX C12 and Genesis C18 stationary phases.  相似文献   

12.
Protein retention is very sensitive to the change of solvent composition in reversed‐phase liquid chromatography for so called “on–off” mechanism, leading to difficulty in mobile phase optimization. In this study, a novel 3‐chloropropyl trichlorosilane ligand bonded column was prepared for protein separation. The differences in retention characteristics between the 3‐chloropropyl trichlorosilane ligand bonded column and n‐alkyl chain modified (C2, C4, C8) stationary phases were elucidated by the retention equation . Retention parameters (a and c) of nine standard proteins with different molecular weights were calculated by using homemade software. Results showed that retention times of nine proteins were similar on four columns, but the 3‐chloropropyl trichlorosilane ligand bonded column obtained the lowest retention parameter values of larger proteins. It meant that their retention behavior affected by acetonitrile concentration would be different due to lower |c| values. More specifically, protein elution windows were broader, and retentions were less sensitive to the change of acetonitrile concentration on the 3‐chloropropyl trichlorosilane ligand bonded column than that on other columns. Meanwhile, the 3‐chloropropyl trichlorosilane ligand bonded column displayed distinctive selectivity for some proteins. Our results indicated that stationary phase with polar ligand provided potential solutions to the “on–off” problem and optimization in protein separation.  相似文献   

13.
A new application of reversed-phase octadecyl (C18) solid phase extraction disks has been developed to separate the colloidally-associated polycyclic aromatic hydrocarbons (PAHs) from those that were truly dissolved in the samples of fresh water. A correction for the retention of small amounts of colloidal material on the C18 disks was required, which would have otherwise lead to minor underestimates in the degree of partitioning between the two phases. Using the humic substance Aldrich Humic Acid (AHA) as a model colloid and the 16 PAHs on the US Enrivonmental Protection Agency priority pollutant list, the partitioning coefficients of the PAHs between the colloidal and truly dissolved phases were shown to be proportional to the hydrophobicity of the PAHs, as measured by their octanol water partition coefficients (Kow). The values for the partition coefficients obtained (cKdoc′) were similar to those previously reported in the literature using alternative methods, confirming that the technique was producing acceptable results. The technique allows the in situ partitioning of PAHs between the truly dissolved and colloidal phases in fresh water bodies to be determined. It will provide an invaluable cross-check of the laboratory-based methods which often require substantial manipulation of the sample and potentially alter the partitioning between the phases.  相似文献   

14.
The understanding of the retention behavior of large molecules is an area of interest in liquid chromatography. Resorcinarene‐based cavitands are cavity‐shaped cyclic oligomers that can create host–guest interactions. We have investigated the chromatographic behavior of two types of cyclic tetramers as analytes in high‐performance liquid chromatography. The experiments were performed at four different temperatures (15, 25, 35, 45°C) on two types of reversed stationary phases (C8 and C18) from two different manufacturers. We have found a huge difference between the retention of resorcinarenes and cavitands. In some cases, the retention factor of cavitands was even a hundred times larger than the retention factor of resorcinarenes. The retention of methylated derivates was two to four times larger compared to that of demethylated compounds on every column. The opposite retention behavior of the resorcinarenes and cavitands on the two types of stationary phases showed well the difference of the selectivity of the XTerra and BDS Hypersil columns. The retention mechanism was studied by the thermodynamic parameters calculated from the van't Hoff equation.  相似文献   

15.
Ionic liquids have been widely used as green alternative mobile phase additives to shield the residuals silanols groups and modify the stationary/mobile phase HPLC systems. The present study aimed to evaluate the performance of the ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ([EMIM][BF4]) in producing extrapolated logkw indices suitable to substitute for octanol–water logP or logD values. The effect of [EMIM][BF4] was investigated for a set of basic and neutral drugs using two different columns, BDS and ABZ+. [EMIM][BF4] was added simply alone or in combination with n‐octanol and was compared with the conventional masking agent n‐decylamine. [EMIM][BF4] reduced the retention by suppressing silanophilic interactions, althoug to a lower extent than n‐decylamine. Addition of n‐octanol further decreased the retention by shielding silanol sites on BDS and/or interacting with polar groups through hydrogen bonding on ABZ+. Logkw/logD7.4 relationships proved moderate compared with those derived upon addition of n‐decylamine. They were considerably improved upon the introduction of protonated fraction F+ in the correlation, reflecting ion pair formation between the chaotropic anion [BF4] and the protonated basic compounds. In this aspect, the ionic liquid [EMIM][BF4], although efficient as a masking agent, cannot be recommended as mobile phase additive to reproduce octanol–water partitioning. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
《Electrophoresis》2018,39(2):348-355
A new single‐urea‐bound chiral stationary phase based on 3,5‐dimethylphenylcarbamoylated β‐cyclodextrin was prepared through the Staudinger reaction of mono (6A‐azido‐6A‐deoxy)‐per(3,5‐dimethylphenylcarbamoylated) β‐cyclodextrin and 3‐aminopropyl silica gel under CO2 atmosphere. The new phase exhibited good enantioseparation performance for 33 analytes using normal‐phase HPLC conditions; 19 of them were baseline separated. Effects of structure of analytes, alcoholic modifiers, and acidic/basic additives on separation performances of this new cyclodextrin chiral stationary phase have been studied in detail. The results showed that the retention and resolution of acidic and basic analytes on the CSP were greatly affected by the additives. Peak symmetry for some analytes could be improved by simultaneously adding acidic and basic additives to the mobile phase. This work expands the potential applications of the cyclodextrin‐based chiral stationary phases in the normal‐phase HPLC.  相似文献   

17.
In the enantiomeric separation of highly polar compounds, a traditionally challenging task for high‐performance liquid chromatography, ion‐exchange chiral stationary phases have found the main field of application. In this contribution, we present a series of novel anion‐exchange‐type chiral stationary phases for enantiomer separation of protected amino phosphonates and N‐protected amino acids. Two of the prepared selectors possessed a double and triple bond within a single molecule. Thus, they were immobilized onto silica support employing either a thiol‐ene (radical) or an azide‐yne (copper(I)‐catalyzed) click reaction. We evaluated the selectivity and the effect of immobilization proceeding either by the double bond of the Cinchona alkaloid or a triple bond of the carbamoyl moiety on the chromatographic performance of the chiral stationary phases using analytes with protecting groups of different size, flexibility, and π‐acidity. The previously observed preference toward protecting groups possessing π‐acidic units, which is a typical feature of Cinchona‐based chiral stationary phases, was preserved. In addition, increasing the bulkiness of the selectors’ carbamoyl units leads to significantly reduced retention times, while very high selectivity toward the tested analytes is retained.  相似文献   

18.
A relatively new stationary phase containing a polar group embedded in a hydrophobic backbone (i.e., ACE ® C18‐amide) was evaluated for use in supercritical fluid chromatography. The amide‐based column was compared with columns packed with bare silica, C18 silica, and a terminal‐amide silica phase. The system was held at supercritical pressure and temperature with a mobile phase composition of CO2 and methanol as cosolvent. The linear solvation energy relationship model was used to evaluate the behavior of these stationary phases, relating the retention factor of selected probes to specific chromatographic interactions. A five‐component test mixture, consisting of a group of drug‐like molecules was separated isocratically. The results show that the C18‐amide stationary phase provided a combination of interactions contributing to the retention of the probe compounds. The hydrophobic interactions are favorable; however, the electron donating ability of the embedded amide group shows a large positive interaction. Under the chromatographic conditions used, the C18‐amide column was able to provide baseline resolution of all the drug‐like probe compounds in a text mixture, while the other columns tested did not.  相似文献   

19.
The parameters that affect the shape of the band profiles of acido‐basic compounds under moderately overloaded conditions (sample size less than 500 nmol for a conventional column) in RPLC are discussed. Only analytes that have a single pKa are considered. In the buffer mobile phase used for their elution, their dissociation may, under certain conditions, cause a significant pH perturbation during the passage of the band. Two consecutive injections (3.3 and 10 μL) of each one of three sample solutions (0.5, 5, and 50 mM) of ten compounds were injected on five C18‐bonded packing materials, including the 5 μm Xterra‐C18 (121 Å), 5 μm Gemini‐C18 (110 Å), 5 μm Luna‐C18(2) (93 Å), 3.5 μm Extend‐C18 (80 Å), and 2.7 μm Halo‐C18 (90 Å). The mobile phase was an aqueous solution of methanol buffered at a constant WWpH of 6, with a phosphate buffer. The total concentration of the phosphate groups was constant at 50 mM. The methanol concentration was adjusted to keep all the retention factors between 1 and 10. The compounds injected were phenol, caffeine, 3‐phenyl 1‐propanol, 2‐phenyl butyric acid, amphetamine, aniline, benzylamine, p‐toluidine, procainamidium chloride, and propranololium chloride. Depending on the relative values of the analyte pKa and the buffer solution pH, these analytes elute as the neutral, the cationic, or the anionic species. The influence of structural parameters such as the charge, the size, and the hydrophobicity of the analytes on the shape of its overloaded band profile is discussed. Simple but general rules predict these shapes. An original adsorption model is proposed that accounts for the unusual peak shapes observed when the analyte is partially dissociated in the buffer solution during its elution.  相似文献   

20.
A highly selective and efficient LC–MS/MS method was developed to determine the plasma concentration of magnolol, hesperidin, neohesperidin and geniposide following oral administration of Zhi‐Zi‐Hou‐Po decoction in normal and depressed rats. Plasma samples were pretreated by protein precipitation with methanol. Chromatographic separation was performed on an XTerra® MS C18 column using a gradient elution with a mobile phase composed of acetonitrile–0.1% aqueous formic acid. The proposed method was validated to be specific, accurate and precise for the analytes determination in plasma samples. The calibration curves displayed good linearity over definite concentration ranges for the analytes. The intra‐ and inter‐day precision of the proposed method at three different levels were all within <11.13% and the relative errors ranged from ?8.46 to 8.93%. The recovery of the four compounds ranged from 82.72 to 89.08% and no apparent matrix effect was observed during sample analysis. After full validation, the established method was successfully applied for comparing the pharmacokinetics of four components between normal and depressed rats. The results showed that the AUC and Cmax of four analytes in depressed rats were significantly different from those in normal rats and might provide helpful information to guide the clinical use of Zhi‐Zi‐Hou‐Po to treat depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号