首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two multidimensional HPLC separations of an Australian red wine are presented, >70% of the available separation space was used. A porous graphitic carbon (PGC) stationary phase was used as the first dimension in both separations with both RP core–shell and hydrophilic interaction chromatography fully porous columns used separately in the second dimension. To overcome peak analysis problems caused by signal noise and low detection limits, the data were pre‐processed with penalised least‐squares smoothing. The PGC × RP combination separated 85 peaks with a spreading angle of 71° and the PGC × hydrophilic interaction chromatography separated 207 peaks with a spreading angle of 80°. Both 2D‐HPLC steps were completed in 76 min using a comprehensive stop‐and‐go approach. A smoothing step was added to peak‐picking processes and was able to greatly reduce the number of false peaks present due to noise in the chromatograms. The required thresholds were not able to ignore the noise because of the small magnitude of the peaks; 1874 peaks were located in the non‐smoothed PGC × RP separation that reduced to 227 peaks after smoothing was included.  相似文献   

2.
In comprehensive two‐dimensional gas chromatography, two individual separations are coupled by means of a rotating thermal desorption modulator interface. The injection pulse introduced via the interface onto the second column should be as short as possible. Parameters affecting the modulator operation are studied. In the set‐up used in this study, the temperature of the second column can be programmed independently from that of the first column. Optimization of the second‐dimension separation to minimize peak broadening and maximize resolution is discussed and an elegant approach to determine second‐dimension retention times using a non‐constant modulation frequency is demonstrated. The high separation power of the comprehensive system is demonstrated by the analysis of technical and biota samples containing chlorinated biphenyls and toxaphene.  相似文献   

3.
This paper describes the development and design of a new, efficient, simple and robust interface for coupling capillary electrophoresis (CE) with inductively coupled plasma-mass spectrometry. The interface is based on a modified microconcentric nebulizer which permits a low flow rate of about 6 μL/min in the free aspiration mode. This interface construction provides an electrical connection for stable electrophoretic separations and adapts the flow rate of the electro-osmotic flow inside the CE capillary to the flow rate of the nebulizer for efficient transport of the analytes into the plasma. By optimization of the fluid mechanical properties the interface prevents the nebulizer from causing any laminar flow in the CE capillary and thus the high resolution power of CE can be preserved. Furthermore, this new device permits independent optimization of the nebulization from the CE whereby exact positioning of the CE capillary is not necessary, thus enabling fast exchange. A low dead volume spraychamber has been constructed which circumvents any band broadening of the sharp CE signals. Peak widths down to 3.5 s comparable to CE with UV detection are possible. Received: 5 February 1999 / Revised: 21 April 1999 / Accepted: 23 April 1999  相似文献   

4.
This paper describes the development and design of a new, efficient, simple and robust interface for coupling capillary electrophoresis (CE) with inductively coupled plasma-mass spectrometry. The interface is based on a modified microconcentric nebulizer which permits a low flow rate of about 6 μL/min in the free aspiration mode. This interface construction provides an electrical connection for stable electrophoretic separations and adapts the flow rate of the electro-osmotic flow inside the CE capillary to the flow rate of the nebulizer for efficient transport of the analytes into the plasma. By optimization of the fluid mechanical properties the interface prevents the nebulizer from causing any laminar flow in the CE capillary and thus the high resolution power of CE can be preserved. Furthermore, this new device permits independent optimization of the nebulization from the CE whereby exact positioning of the CE capillary is not necessary, thus enabling fast exchange. A low dead volume spraychamber has been constructed which circumvents any band broadening of the sharp CE signals. Peak widths down to 3.5 s comparable to CE with UV detection are possible. Received: 5 February 1999 / Revised: 21 April 1999 / Accepted: 23 April 1999  相似文献   

5.
A multi‐channel microchip electrophoresis using a programmed step electric field strength (PSEFS) method was investigated for fast parallel detection of feline panleukopenia virus (FPV) DNA. An expanded laser beam, a 10× objective lens, and a charge‐coupled device camera were used to simultaneously detect the separations in three parallel channels using laser‐induced fluorescence detection. The parallel separations of a 100‐bp DNA ladder were demonstrated on the system using a sieving gel matrix of 0.5% poly(ethylene oxide) (Mr = 8 000 000) in the individual channels. In addition, the PSEFS method was also applied for faster DNA separation without loss of resolving power. A DNA size marker, FPV DNA sample, and a negative control were simultaneously analyzed with single‐run and one‐step detection. The FPV DNA was clearly distinguished within 30 s, which was more than 100 times faster than with conventional slab gel electrophoresis. The proposed multi‐channel microchip electrophoresis with PSEFS was demonstrated to be a simple and powerful diagnostic method to analyze multiple disease‐related DNA fragments in parallel with high speed, throughput, and accuracy.  相似文献   

6.
A new capillary high‐performance liquid chromatography method with atmospheric pressure chemical ionization mass spectrometry was developed for the analysis of fatty acid methyl esters and long‐chain alcohols. The chromatographic separation was achieved using a Zorbax SB‐C18 HPLC column (0.3 × 150 mm, 3.5 μm) with a mobile phase composed of acetonitrile and formic acid and delivered isocratically at a flow rate of 10 μL/min. The column temperature was programmed simply, using a common column oven. Good reproducibility of the temperature profile and retention times were achieved. The temperature programming during the isocratic high‐performance liquid chromatography run had a similar effect as a solvent gradient; it reduced retention times of later eluting analytes and improved their detection limits. Two atmospheric pressure chemical ionization sources of the mass spectrometry detector were compared: an enclosed conventional ion source and an in‐house made ion source with a glass microchip nebulizer. The enclosed source provided better detectability of saturated fatty acid methyl esters and made it possible to determine the double bond positions using acetonitrile‐related adducts, while the open chip‐based source provided better analytical figures of merit for unsaturated fatty acid methyl esters. Temperature‐programmed capillary high‐performance liquid chromatography is a promising method for analyzing neutral lipids in lipidomics and other applications.  相似文献   

7.
The combination of CE and MS is now a widely used tool that can provide a combination of high resolution separations with detailed structural information. Recently, we highlighted the benefits of an approach to add further functionality to this well‐established hyphenated technique, namely the possibility to perform chemical reactions within the sheath‐liquid of the CE‐MS interface 1 . Apart from using hydrogen/deuterium exchange for online determination of numbers of exchangeable protons, the addition of DPPH? (2,2‐diphenyl‐1‐picrylhydrazyl) to the sheath‐liquid can be used as a fast screening tool for studying antioxidant characteristics of individual components. Such a CE‐MS methodology allows rapid and information‐rich analysis with minimal reagent and sample consumption to be performed. In the present work, we demonstrate the applicability of this approach for the characterization of phenolic plant extracts from the Labiatae family, namely Rosmarinus officinalis and Melissa officinalis. Using the described approach, a wide range of compounds (15 and 13 phenolic compounds, respectively) could be confidently identified using a combination of high resolution CE‐MS separations with implementation of online deuterium exchange and DPPH? reactions. These compounds included polyphenols, phenolic acids, and triterpene acids. In conjunction with online MS/MS experiments, extensive structural information for aglyconic and glycosylated antioxidants present in the extracts could be obtained using simple experimental changes, which can be carried out prior to the purchasing of expensive chemical standards or the time‐consuming preparative isolation of individual compounds.  相似文献   

8.
In this work, poly(2‐ethyl‐2‐oxazoline) (PEtOx) is crosslinked to realize a moisture‐ and thermo‐responsive shape‐memory polymer. The obtained PEtOx networks exhibit excellent shape‐memory properties with storable strains of up to 650% and recovery values of 100% over at least 10 shape‐memory cycles. The trigger temperature (Ttrig) of 68 °C of a PEtOx network at a relative humidity (RH) of 0% decreases with increasing moisture and equals room temperature at an RH of 40%. Thus, programmed PEtOx networks trigger sensitively on a certain temperature/moisture combination and, further, can be programmed as well as triggered at room temperature exclusively by varying humidity. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1053–1061  相似文献   

9.
Thermodynamics‐based models have been demonstrated to be useful for predicting retention time and peak widths in gas chromatography and two‐dimensional gas chromatography separations. However, the collection of data to train the models can be time consuming, which lessens the practical utility of the method. In this contribution, a method for obtaining thermodynamic‐based data to predict peak widths in temperature‐programmed gas chromatography is presented. Experimental work to collect data for peak width prediction is identical to that required to collect data for retention time prediction using approaches that we have presented previously. Using this combined approach, chromatograms including retention times and peak widths are predicted with very high accuracy. Typical errors in retention time are < 0.5%, while errors in peak width are typically < 5% as demonstrated using polycycic aromatic hydrocarbons and a mixture containing compounds with aldehyde, ketone, alkene, alkane, alcohol, and ester functionalities.  相似文献   

10.
Magnetic particles are of great interest in various biomedical applications, such as, sample preparation, in vitro biomedical diagnosis, and therapy. For biosensing applications, the used functional magnetic particles should answer numerous criteria such as; submicron size in order to avoid rapid sedimentation, high magnetic content for fast separations under applied magnetic field, and finally, good colloidal stability. Therefore, the aim of this work was to prepare submicron magnetic core and conducting polymer shell particles. The polymer shell was induced using p‐phenylenediamine as key monomer. The obtained core–shell particles were characterized in terms of particle size, size distribution, magnetization properties, Fourier transform infrared (FTIR) analysis, surface morphology, chemical composition, cyclic voltammetry, and impedance spectroscopy. The best experimental condition was found using 40 mg of povidone (PVP—stabilizing agent) and 0.16 mmol of p‐phenylenediamine. Using such initial composition, the core‐shell magnetic nanoparticles shown a narrowed size distribution around 290 nm and high magnetic content (above 50%). The obtained amino containing submicron highly magnetic particles were found to be a conducting material and superparamagnetic in nature. These promising conducting magnetic particles can be used for both transport and lab‐on‐a‐chip detection.  相似文献   

11.
The photophysical and ion‐sensing properties of densely grafted conjugated polymer poly‐p‐phenylenevinylene‐g‐poly(2‐(methacryloyloxy)ethyl)trimethylammonium chloride (PPV‐g‐PMETAC) are presented herein. The grafted polymer exhibits excellent iodide‐sensing which is easily observed using fluorescence spectroscopy. The iodide detection limit for PPV‐g‐PMETAC was found to be 10 nM and was independent of temperature and pH <12. The change in fluorescence of PPV‐g‐PMETAC, upon exposure to iodide, was attributed to polymer aggregation due to changes in the morphology of the grafted PMETAC side chains, which was observed using atomic force microscopic and dynamic light scattering studies. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1997–2003  相似文献   

12.
A new type of temperature‐responsive electrochemical sensor was constructed based on a glass carbon electrode modified by the composite containing temperature‐responsive polymer polystyrene‐poly N, N‐diethyl acrylamide‐polystyrene (PS‐PDEA‐PS) and fullerenes‐carboxylate multi‐walled carbon nanotubes (C60‐MWCNTs). The sensor was used for the electrochemical detection of catechol (CC). When the temperature is higher than the critical temperature (LCST) of PS‐PDEA‐PS, the electrochemical behavior of CC can be detected, which it is in the “on” state. When the temperature is lower than LCST, the composite modified film is in the “off” state and the electrochemical behavior of CC was not detected. Under the best experimental conditions, the sensor has a good detection range for catechol from 4.0 to 135.0 μM, with a LOD of 1.45 μM. In addition, the proposed sensor has good stability and reproducibility, and was successfully applied to the determination of catechol in real tap water.  相似文献   

13.
Xiexin Tang (XXT) is a traditional Chinese medicine (TCM) that has been used in herbal clinics for more than 1800 years. Many studies have shown that XXT has therapeutic effects on patients with arteriosclerosis owing to its antioxidant activity. However, there is little information about the relationship between the chemical composition of XXT and its antioxidant activity. In this study, the HPLC‐ABTS‐DAD‐Q‐TOF/MS method, which can simultaneously identify individual components and rapidly screen for antioxidant compounds, was used to screen and identify antioxidant components in XXT. The 15 compounds identified were gluco‐syringic acid, adenine, gallic acid, biflorin, cularine, 6‐C ‐arabinose‐8‐C ‐glucose‐chrysin, 6‐C ‐glucose‐8‐C ‐arabinose–chrysin, baicalin, rhein‐8‐O‐β ‐d ‐glucopyranoside, coptisine, epiberberine, jatrorrhizine, norwogonin, 5,7,2′‐trihydroxy‐6‐ methoxyflavone and baicalein. In addition, the data showed that the antioxidant activity of peaks 4, 6, and 11 was lower in XXT than in its constituent herbs, while the activity of peaks 1, 2, 3, 5, 7, 8, 10, 12, 13, 14 and 15 was higher in XXT. Compound 5 had the strongest antioxidant activity in XXT, while compound 1 showed the strongest antioxidant activity among its constituent herb. The differences between antioxidant activities of major components of XXT and those of its constituent herbs might be due to the interaction of crude drugs that changes the solubility of active components during the decoction process. The results show that the HPLC‐ABTS‐DAD‐Q‐TOF/MS method can successfully combine on‐line mass spectrometry with activity detection system. It is a useful tool for the rapid detection and identification of antioxidants, and for quantitative analysis of individual antioxidants in complex mixtures such as plant extracts. Furthermore, this method does not require extensive extract purification and fraction collection.  相似文献   

14.
A series‐coupled ensemble of two capillary GC columns of different selectivity with an adjustable pressure at the column junction point is used to obtain tunable selectivity for high‐speed GC and GC/TOFMS. An electronic pressure controller with a 0.1‐psi step size is used to obtain numerous computer‐selected unique selectivities. System configurations for conventional, atmospheric‐pressure outlet operation with flame ionization detection and for vacuum‐outlet operation with photoionization detection are described for GC‐only experiments. Polydimethylsiloxane is used as the non‐polar column and polyethylene glycol (atmospheric outlet) or triflouropropylpolysiloxane (vacuum outlet) is used as the polar column. For GC/TOFMS experiments, 5% phenyl polydimethylsiloxane was used as the non‐polar column, and polyethylene glycol was used as the polar column. The time‐of‐flight mass spectrometer can acquire up to 500 complete mass spectra per second. Since spectral continuity is achieved across the entire chromatographic peak profile, severely overlapping peaks can be spectrally deconvoluted for high‐speed characterization of completely unknown mixtures. For mixture components with significantly different fragmentation patterns, spectral deconvolution can be achieved for chromatographic peak separations of as little as 6.0 ms. This can result is very large peak capacity for time compressed (not completely resolved) chromatograms. The use of columns with tunable selectivity allows for precise peak‐position control, which can result in more efficient utilization of available peak capacity and thus further time compression of chromatograms. The limits of tunability and deconvolution are tested for near co‐elutions of different classes of hydrocarbon compounds as well as for more multi‐functional mixtures.  相似文献   

15.
The palladium complex of MgO‐supported melamine‐formaldehyde polymer catalyst was prepared and characterized by X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). The preparation of Nn‐octyl‐D ‐glucamine was investigated by using this complex as the catalyst. It was found that the palladium complex of MgO‐supported melamine‐formaldehyde polymer has a good catalytic activity for the hydrogenation of n‐octylamine with D ‐glucose to produce Nn‐octyl‐D ‐glucamine. The effects of additive, solvent, temperature, hydrogen pressure, Pd content in the catalyst and the amount of catalyst on the preparation of Nn‐octyl‐D ‐glucamine have all been studied. Under the optimum experimental conditions—D ‐glucose, 37.2 mmol; n‐octylamine, 31 mmol; triethylamine, 1.0 ml; ethanol, 60 ml; temperature, 333 K; hydrogen pressure, 1.5 MPa; the amount of the catalyst (Pd content 3.55%, N/Pd molar ratio 12), 0.7 g—the highest yield of Nn‐octyl‐D ‐glucamine (57.6%) was obtained. XRD results show that melamine‐formaldehyde polymer changed the structure of MgO, and XPS results suggest that coordination bonds were formed between the hexatomic ring and metal atom, and palladium particles were immobilized on the polymer. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
A novel and unusual polymer topology, i.e. a‐ring‐with‐two‐branches, has been constructed efficiently by making use of an interiorly functionalized poly(tetrahydrofuran) (poly(THF)) having two pyrrolidinium groups. The dicarboxylate counterion, i. e. terephthalate, was then introduced by an ion‐exchange reaction of the interiorly located pyrrolidinium group. Subsequent heat treatment under appropriate dilution caused an efficient polymer cyclization to produce an a‐ring‐with‐two‐branches polymer topology in high yield through the selective and quantitative ring‐opening of the pyrrolidinium groups by the dicarboxylate counterion.  相似文献   

17.
The self‐assembling nature and phase‐transition behavior of a novel class of triarm, star‐shaped polymer–peptide block copolymers synthesized by the combination of atom transfer radical polymerization and living ring‐opening polymerization of α‐amino acid‐N‐carboxyanhydride are demonstrated. The two‐step synthesis strategy adopted here allows incorporating polypeptides into the usual synthetic polymers via an amido–amidate nickelacycle intermediate, which is used as the macroinitiator for the growth of poly(γ‐benzyl‐L ‐glutamate). The characterization data are reported from analyses using gel permeation chromatography and infrared, 1H NMR, and 13C NMR spectroscopy. This synthetic scheme grants a facile way to prepare a wide range of polymer–peptide architectures with perfect microstructure control, preventing the formation of homopolypeptide contaminants. Studies regarding the supramolecular organization and phase‐transition behavior of this class of polymer‐block‐polypeptide copolymers have been accomplished with X‐ray diffraction, infrared spectroscopy, and thermal analyses. The conformational change of the peptide segment in the block copolymer has been investigated with variable‐temperature infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2774–2783, 2006  相似文献   

18.
New thermoresponsive polymers based on poly(N‐(N′‐alkylcarbamido)propyl methacrylamide) analogues were designed with increased hydrophobic content to facilitate temperature‐dependent chromatographic separations of peptides and proteins from aqueous mobile phases. These polymer solution exhibited a lower critical solution temperature (LCST) when the alkyl group is methyl, ethyl, isopropyl, propyl, butyl, and isobutyl. However, larger alkyl groups such as hexyl and phenyl were not soluble in aqueous solutions at any temperature. Phase transition temperatures were lower for larger alkyl groups and increased with decreasing polymer molecular weight and concentration in solution. LCST dependence on polymer molecular weight and concentration is more significant compared with well‐studied poly(N‐isopropylacrylamide) (PIPAAm). Partition coefficient (log P) values for N‐(N′‐butylcarbamide)propylmethacrylamide and N‐(N′‐isobutylcarbamide)propyl methacrylamide (iBuCPMA) monomers are larger than that for IPAAm monomer, suggesting higher hydrophobicity than IPAAm. Chromatographic evaluation of poly(N‐(N′‐isobutylcarbamide)propyl methacrylamide) (PiBuCPMA) grafted silica particles in aqueous separations revealed larger k′ values for peptides, insulin, insulin chain B, and angiotensin I than PIPAAm‐grafted silica beads. In particular, k′ values for insulin obtained from PiBuCPMA‐grafted silica separations were much larger than those from PIPAAm‐grafted surface separations, indicating that PiBuCPMA should be more hydrophobic than PIPAAm. These results support the introduction of alkylcarbamido groups to efficiently increase thermoresponsive polymer hydrophobicity of poly(N‐alkylacrylamides) and poly(N‐alkylmethacrylamides). Consequently, poly(N‐(N′‐alkylcarbamido)propyl methacrylamide) analogues such as PiBuCPMA and poly(N‐(N′‐alkylcarbamido)alkylmehacrylamide) are new thermoresponsive polymers with appropriate hydrophobic partitioning properties for protein and peptide separations in aqueous media, depending on selection of their alkyl groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5471–5482, 2008  相似文献   

19.
SiO2–PNIPAAm core–shell microgels (PNIPAAm=poly(N‐isopropylacrylamide)) with various internal cross‐linking densities and different degrees of polymerization were prepared in order to investigate the effects of stability, packing, and temperature responsiveness at polar–apolar interfaces. The effects were investigated using interfacial tensiometry, and the particles were visualized by cryo‐scanning electron microscopy (SEM) and scanning force microscopy (SFM). The core–shell particles display different interfacial behaviors depending on the polymer shell thickness and degree of internal cross‐linking. A thicker polymer shell and reduced internal cross‐linking density are more favorable for the stabilization and packing of the particles at oil–water (o/w) interfaces. This was shown qualitatively by SFM of deposited, stabilized emulsion droplets and quantitatively by SFM of particles adsorbed onto a hydrophobic planar silicon dioxide surface, which acted as a model interface system. The temperature responsiveness, which also influences particle–interface interactions, was investigated by dynamic temperature protocols with varied heating rates. These measurements not only showed that the particles had an unusual but very regular and reversible interface stabilization behavior, but also made it possible to assess the nonlinear response of PNIPAAm microgels to external thermal stimuli.  相似文献   

20.
An ion‐moderated partition high‐performance liquid chromatography method was developed for the separation and identification of common organic carbonates. The separation of organic carbonates was achieved on an ion exclusion column with an exchangeable hydrogen ion. An isocratic, aqueous mobile phase was used for elution and detection was performed with a refractive index detector. The developed method was validated for specificity, linearity, limits of detection and quantification, precision and accuracy. All calibration curves showed excellent linear regression (R2 > 0.9990) within the testing range. The limits of detection were 3.8–30.8 ppm for the analyzed carbonates. Improvements in the peak resolution of the chromatograms were achieved by decreasing the column temperature. Addition of the organic modifier, acetonitrile, to the eluent was found to have insignificant effects on the peak resolution. The developed method was demonstrated for analyzing organic carbonate components in the electrolyte system of a commercial lithium ion battery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号