首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
From the carbolithiation of 1‐(cyclopenta‐2,4‐dien‐1‐ylidene)‐N,N‐dimethylmethanamine (=6‐(dimethylamino)fulvene; 3 ) and different lithiated azaindoles 2 (1‐methyl‐7‐azaindol‐2‐yl, 1‐[(diethylamino)methyl]‐7‐azaindol‐2‐yl, and 1‐(methoxymethyl)‐7‐azaindol‐2‐yl), the corresponding lithium cyclopentadienide intermediates 4a – 4c were formed (7‐azaindole=1H‐pyrrolo[2,3‐b]pyridine). The latter underwent a transmetallation reaction with TiCl4 resulting in the (dimethylamino)‐functionalised ‘titanocenes’ 5a – 5c . When the ‘titanocenes’ 5a – 5c were tested against LLC‐PK cells, the IC50 values obtained were of 8.8, 12, and 87 μM , respectively. The most cytotoxic ‘titanocene’, 5a , with an IC50 value of 8.8 μM is nearly as cytotoxic as cis‐platin, which showed an IC50 value of 3.3 μM when tested on the epithelial pig kidney LLC‐PK cell line, and ca. 200 times better than ‘titanocene dichloride’ itself.  相似文献   

2.
The synthesis of 46 derivatives of (2R,3R,4S)‐2‐(aminomethyl)pyrrolidine‐3,4‐diol is reported (Scheme 1 and Fig. 3), and their inhibitory activities toward α‐mannosidases from jack bean (B) and almonds (A) are evaluated (Table). The most‐potent inhibitors are (2R,3R,4S)‐2‐{[([1,1′‐biphenyl]‐4‐ylmethyl)amino]methyl}pyrrolidine‐3,4‐diol ( 3fs ; IC50(B)=5 μM , Ki=2.5 μM ) and (2R,3R,4S)‐2‐{[(1R)‐2,3‐dihydro‐1H‐inden‐1‐ylamino]methyl}pyrrolidine‐3,4‐diol ( 3fu ; IC50(B)=17 μM , Ki=2.3 μM ). (2S,3R,4S)‐2‐(Aminomethyl)pyrrolidine‐3,4‐diol ( 6 , R?H) and the three 2‐(N‐alkylamino)methyl derivatives 6fh, 6fs , and 6f are prepared (Scheme 2) and found to inhibit also α‐mannosidases from jack bean and almonds (Table). The best inhibitor of these series is (2S,3R,4S)‐2‐{[(2‐thienylmethyl)amino]methyl}pyrrolidine‐3,4‐diol ( 6o ; IC50(B)=105 μM , Ki=40 μM ). As expected (see Fig. 4), diamines 3 with the configuration of α‐D ‐mannosides are better inhibitors of α‐mannosidases than their stereoisomers 6 with the configuration of β‐D ‐mannosides. The results show that an aromatic ring (benzyl, [1,1′‐biphenyl]‐4‐yl, 2‐thienyl) is essential for good inhibitory activity. If the C‐chain that separates the aromatic system from the 2‐(aminomethyl) substituent is longer than a methano group, the inhibitory activity decreases significantly (see Fig. 7). This study shows also that α‐mannosidases from jack bean and from almonds do not recognize substrate mimics that are bulky around the O‐glycosidic bond of the corresponding α‐D ‐mannopyranosides. These observations should be very useful in the design of better α‐mannosidase inhibitors.  相似文献   

3.
Phytochemical investigation of the leaves of Phragmanthera capitata collected on Cassia spectabilis tree led to the isolation of two natural lactones, rel‐(1R,5S,7S)‐7‐[2‐(4‐hydroxyphenyl)ethyl]‐2,6‐dioxabicyclo[3.3.1]nonan‐3‐one ( 1 ) and 4‐{2‐[rel‐(1R,3R,5S)‐7‐oxo‐2,6‐dioxabicyclo[3.3.1]non‐3‐yl]ethyl}phenyl 3,4,5‐trihydroxybenzoate ( 2 ) together with the known compounds betulinic acid ( 3 ), dodoneine ( 4 ), quercetin 3‐Oα‐L ‐rhamnopyranoside ( 5 ), quercetin 3‐Oα‐L ‐arabinofuranoside ( 6 ), quercetin ( 7 ), betulin ( 8 ), lupeol ( 9 ), and sitosterol ( 10 ). Their structures were established by means of modern spectroscopic techniques, and the relative configuration of compound 1 was confirmed by X‐ray analysis. Compounds 1 and 2 were tested in vitro for their antiplasmodial activity against the Plasmodium falciparum chloroquine sensitive‐strains NF54 and 3D7. Compound 2 exhibited good antiplasmodial activity against both strains with IC50 of 2.4 and 4.9 μM , respectively, while compound 1 was inactive.  相似文献   

4.
New 2‐(aminomethyl)‐5‐(hydroxymethyl)pyrrolidine‐3,4‐diol derivatives were synthesized from (5S)‐5‐[(trityloxy)methyl]pyrrolidin‐2‐one ( 6 ) (Schemes 1 and 2) and their inhibitory activities toward 25 glycosidases assayed (Table). The influence of the configuration of the pyrrolidine ring on glycosidase inhibition was evaluated. (2R,3R,4S,5R)‐2‐[(benzylamino)methyl]‐5‐(hydroxymethyl)pyrrolidine‐3,4‐diol ((+)‐ 21 ) was found to be a good and selective inhibitor of α‐mannosidase from jack bean (Ki=1.2 μM ) and from almond (Ki=1.0 μM ). Selectivity was lost for the non‐benzylated derivative (2R,3R,4S,5R)‐2‐(aminomethyl)‐5‐(hydroxymethyl)pyrrolidine‐3,4‐diol ((+)‐ 22 ) which inhibited α‐galactosidases, β‐galactosidases, β‐glucosidases, and αN‐acetylgalactosaminidase as well.  相似文献   

5.
Jatrophodione A ( 1 ), a new diterpene with four rings, together with nine known compounds, caniojane ( 2 ), jatropholone A ( 3 ), jatropholone B ( 4 ), jatrogrossidione ( 5 ), 2‐epijatrogrossidione ( 6 ), heudelotinone ( 7 ), gossweilone ( 8 ), (3α)‐3‐hydroxy‐ent‐pimara‐8(14),15‐dien‐12‐one ( 9 ), and 12‐hydroxy‐13‐methylpodocarpa‐8,11,13‐trien‐3‐one ( 10 ), was isolated from the aerial parts of Jatropha curcas. Compounds 5, 6, 9 , and 10 were found for the first time in this plant. Their structures were established by spectroscopic analysis, including 2D‐NMR spectroscopic techniques. Cytotoxicities of compounds 1, 2, 7, 8 , and 9 were tested on the three cancer cell lines A549, Hela, and SMMC‐7721. Results showed that 7 exhibited cytotoxicity against SMMC‐7721 with an IC50 value of 21.68 μM , whereas 7 and 8 were active against A549 with the IC50 values of 16.04 and 20.47 μM , and against Hela with the IC50 values of 10.67 and 22.83 μM , respectively.  相似文献   

6.
A series of seven nonclassical three carbon atom bridged 2,4‐diamino‐5‐substituted‐pyrrolo[2,3‐d]‐pyrirnidines 1a‐g were synthesized as potential inhibitors of dihydrofolate reductase. Selective oxidation of diols 7a‐g affords α‐hydroxy ketones 8a‐g. Subsequent condensation with malononitrile gave the requisite 2‐amino‐3‐cyano‐4‐substituted furan precursors 9a‐g. Cyclocondensation with guanidine in refluxing ethanol in one step affords the three carbon atom bridged 2,4‐diamino‐5‐substituted‐pyrrolo[2,3‐d]‐pyrimidines 1a‐g. Preliminary biological results indicated that these compounds showed moderate inhibitory activities against dihydrofolate reductases from Pneumocystis carinii, Toxoplasma gondii, Mycobacterium avium and rat liver with IC50 values in the 0.66 μM ‐ 70.1 μM range and some compounds had marginal selectivity for T. gondii dihydrofolate reductase.  相似文献   

7.
The title compounds, 2‐{[tris­(hydroxy­methyl)­methyl]­amino­methyl­ene}cyclo­hexa‐3,5‐dien‐1(2H)‐one, C11H15NO4, (I), 6‐hydroxy‐2‐{[tris­(hydroxy­methyl)­methyl]­amino­methyl­ene}­cyclo­hexa‐3,5‐dien‐1(2H)‐one, C11H15NO5, (II), and 6‐methoxy‐2‐{[tris­(hydroxy­methyl)­methyl]­amino­methyl­ene}­cyclo­hexa‐3,5‐dien‐1(2H)‐one, C12H17NO5, (III), adopt the keto–amine tautomeric form, with the formal hydroxy H atom located on the N atom, and the NH group and oxo O atom display a strong intramolecular N—H⋯O hydrogen bond. The N—H⋯O hydrogen‐bonded rings are almost planar and coupled with the cyclo­hexa­diene rings. The carbonyl O atoms accept two other H atoms from the alcohol groups of adjacent mol­ecules in (I), and one from the alcohol and one from the phenol group in (II), but from only one alcohol H atom in (III).  相似文献   

8.
In continuation of our search for potent antiplatelet agents, we have synthesized and evaluated several α‐methylidene‐γ‐butyrolactones bearing 3,4‐dihydroquinolin‐2(1H)‐one moieties. O‐Alkylation of 3,4‐dihydro‐8‐hydroxyquinolin‐2(1H)‐one ( 1 ) with chloroacetone under basic conditions afforded 3,4‐dihydro‐8‐(2‐oxopropoxy)quinolin‐2(1H)‐one ( 2a ) and tricyclic 2,3,6,7‐tetrahydro‐3‐hydroxy‐3‐methyl‐5H‐pyrido[1,2,3‐de][1,4]benzoxazin‐5‐one ( 3a ) in a ratio of 1 : 2.84. Their Reformatsky‐type condensation with ethyl 2‐(bromomethyl)prop‐2‐enoate furnished 3,4‐dihydro‐8‐[(2,3,4,5‐tetrahydro‐2‐methyl‐4‐methylidene‐5‐oxofuran‐2‐yl)methoxy]quinolin‐2(1H)‐one ( 4a ), which shows antiplatelet activity, in 70% yield. Its 2′‐Ph derivatives, and 6‐ and 7‐substituted analogs were also obtained from the corresponding 3,4‐dihydroquinolin‐2(1H)‐ones via alkylation and the Reformatsky‐type condensation. Of these compounds, 3,4‐dihydro‐7‐[(2,3,4,5‐tetrahydro‐4‐methylidene‐5‐oxo‐2‐phenylfuran‐2‐yl)methoxy]quinolin‐2(1H)‐one ( 10b ) was the most active against arachidonic acid (AA) induced platelet aggregation with an IC50 of 0.23 μM . For the inhibition of platelet‐activating factor (PAF) induced aggregation, 6‐{[2‐(4‐fluorophenyl)‐2,3,4,5‐tetrahydro‐4‐methylidene‐5‐oxofuran‐2‐yl]methoxy}‐3,4‐dihydroquinolin‐2(1H)‐one ( 9c ) was the most potent with an IC50 value of 1.83 μM .  相似文献   

9.
(−)‐ and (+)‐Conduramine B‐1 ((−)‐ and (+)‐ 5 , resp.) have been derived from (+)‐ and (−)‐7‐oxabicyclo[2.2.1]hept‐5‐en‐2‐one (‘naked sugars’ of the first generation). Although (−)‐ 5 imitates the structure of β‐glucosides, it does not inhibit β‐glucosidases but inhibits α‐mannosidases selectively. N‐Benzylation of (−)‐ 5 improves the potency of conduramine B‐1 as α‐mannosidase inhibitor and also generates compounds inhibiting β‐glucosidases. For instance, (−)‐N‐benzyl‐conduramine B‐1 ((−)‐ 19a ) is a competitive inhibitor of β‐glucosidase from almonds (IC50 = 32 μM , Ki = 10 μM ) and a weak inhibitor of α‐mannosidases from jack bean (IC50 = 171 μM ) and from almonds (IC50 = 225 μM ) whereas (−)‐N‐(4‐phenylbenzyl)conduramine B‐1 ((−)‐ 19g ) is a good inhibitor of α‐mannosidase from jack beans (IC50 = 29 μM , Ki = 4.8 μM ) and a weaker inhibitor of β‐glucosidase from almonds (IC50 = 32 μM , Ki = 7.8 μM ) (Table 1).  相似文献   

10.
Lewis acid mediated skeletal rearrangement of the ingol diterpenoids 1 and 4 via regio‐ and stereospecific cyclopropane‐ring opening afforded the four new compounds 2, 3, 5 , and 6 , named nivulianol A–D (Scheme 1). Their structures were established by means of IR, MS, and in‐depth NMR spectroscopic analyses. The rearranged congeners were tested for lipopolysaccharide (LPS)‐induced prostaglandin (PG) E2 (cyclooxygenase‐2) inhibition. Thereby, nivulianol B (=(1S*,2E,4R*,5S*,7Z,9S*,11R,13S*,14S*)‐14‐acetoxy‐5‐methoxy‐3,9,13‐trimethyl‐6‐(1‐methylethenyl)‐10‐oxo‐15‐oxatricyclo[9.3.1.01,11]pentadeca‐2,7‐dien‐4‐yl (2Z)‐2‐methylbut‐2‐enoate; 3 ) was found to be significantly active, with an IC50 value of 36.3 μg/ml.  相似文献   

11.
Some oxime‐containing 3,4‐dihydroquinolin‐2(1H)‐one derivatives were synthesized and evaluated for their antiplatelet and antiproliferative activities. These compounds were synthesized via alkylation of hydroxyl precursors followed by the reaction with NH2OH. The preliminary assays indicated that (Z)‐7‐[2‐(4‐fluorophenyl)‐2‐(hydroxyimino)ethoxy]‐3,4‐dihydroquinolin‐2(1H)‐one (13c) is the most active against U46619 induced platelet aggregation with an IC50 value of 3.51 μM. For the inhibition of AA‐induced aggregation, (E)‐6‐[2‐(hydroxyimino)propoxy]‐3,4‐dihydroquinolin‐2(1H)‐one (15 ) is the most potent with an IC50 value of 1.85 μM. These oxime‐containing 3,4‐dihydroquinolin‐2(1H)‐one derivatives were inactive against thrombin induced platelet aggregation with an IC50 value of greater than 26.78 μM. For the antiproliferative activity, most of these oxime‐containing 3,4‐dihydroquinolin‐2(1H)‐one derivatives were inactive while (Z)‐7‐[2‐(hydroxyimino)‐2‐(naphthalen‐2‐yl)ethoxy]‐3,4‐dihydroquinolin‐2(1H)‐one (13a) exhibited only marginal activities with GI50 value of 7.63, 7.34 and 6.36 μM against the growth of NPC‐TW01, NCI‐H661, and Jurkat respectively.  相似文献   

12.
A series of novel N‐aryl‐4‐(tert‐butyl)‐5‐(1H‐1,2,4‐triazol‐1‐yl)thiazol‐2‐amines synthesized in a green way. H2O2‐NaBr Brominating circulatory system was used in the synthesis of the key intermediate in a mild condition. All of the target compounds were confirmed by 1H NMR and elemental analysis and tested for their cytotoxicity against two different human cancer cell lines. The cytotoxicity assay revealed that some of the title compounds showed moderate to strong cytotoxic activities. Compound 2i was the most potent compound with the IC50 values of 9 μM against Hela cells and 15 μM against Bel–7402 cells, respectively.  相似文献   

13.
Two new cucurbitane‐type triterpenes, 25‐methoxycucurbita‐5,23(E)‐diene‐3β,19‐diol ( 1 ) and 7β‐ethoxy‐3β‐hydroxy‐25‐methoxycucurbita‐5,23(E)‐dien‐19‐al ( 2 ), together with three known cucurbitane‐type triterpenes, 3β,7β,25‐trihydroxycucurbita‐5,23(E)‐dien‐19‐al ( 3 ), (23E)‐3β‐hydroxy‐7β,25‐dimethoxycucurbita‐5,23‐dien‐19‐al ( 4 ), and 3β‐hydroxy‐25‐methoxycucurbita‐6,23(E)‐dien‐19,5β‐olide ( 5 ), were isolated from the fruit pulp of Momordica charantia. The structures of two new compounds were elucidated on the basis of 1D and 2D NMR, MS, IR, optical rotation. Among these isolates, compounds 1 , 2 , and 5 showed slight cytotoxic activity against the SK‐Hep 1 cell line with IC50 values of 33.1, 24.3, and 38.7 μM, respectively.  相似文献   

14.
The four new and four known sesquiterpenoid derivatives 1 – 4 and 5 – 8 , respectively, were isolated from the air‐dried roots of Ferula mongolica. The structures of these compounds were determined by spectroscopic methods and found to be rel‐(2R,3R)‐2‐[(3E)‐4,8‐dimethylnona‐3,7‐dienyl]‐3,4‐dihydro‐3,8‐dihydroxy‐2‐methyl‐2H,5H‐pyrano[2,3‐b][1]benzopyran‐5‐one ( 1 ), rel‐(2R,3R)‐2‐[(3E)‐4,8‐dimethylnona‐3,7‐dienyl]‐2,3‐dihydro‐7‐hydroxy‐2,3‐dimethyl‐4H‐furo[2,3‐b][1]benzopyran‐4‐one ( 2 ), rel‐(2R,3R)‐2‐[(3E)‐4,8‐dimethylnona‐3,7‐dienyl]‐2,3‐dihydro‐7‐hydroxy‐2,3‐dimethyl‐4H‐furo[3,2‐c][1]benzopyran‐4‐one ( 3 ), rel‐(2R,3R)‐2‐[(3E)‐4,8‐dimethylnona‐3,7‐dienyl]‐2,3‐dihydro‐7‐methoxy‐2,3‐dimethyl‐4H‐furo[3,2‐c][1]benzopyran‐4‐one ( 4 ), (4E,8E)‐1‐(2‐hydroxy‐4‐methoxyphenyl)‐5,9,13‐trimethyltetradeca‐4,8,12‐trien‐1‐one ( 5 ), the rel‐(2R,3S) diastereoisomer 6 of 2 , the rel‐(2R,3S) diastereoisomer 7 of 4 , and (4E,8E)‐1‐(2,4‐dihydroxyphenyl)‐5,9,13‐trimethyltetradeca‐4,8,12‐trien‐1‐one ( 8 ). These compounds were tested as inhibitors against the enzyme α‐glucosidase. The compounds 1 – 6 and 8 exhibited significant inhibitory activity and, therefore, represent a new class of α‐glucosidase inhibitors.  相似文献   

15.
Two different tautomeric forms of a new Schiff base, C17H19N3O2·C17H19N3O2, are present in the crystal in a 1:1 ratio, namely the enol–imine form 4‐(1‐{[4‐(dimethylamino)benzylidene]hydrazono}ethyl)benzene‐1,3‐diol and the keto–amine form 6‐[(E)‐1‐{[4‐(dimethylamino)benzylidene]hydrazino}ethylidene]‐3‐hydroxycyclohexa‐2,4‐dien‐1‐one. The tautomers are formed by proton transfer between the hydroxy O atom and the imine N atom and are hydrogen bonded to each other to form a one‐dimensional zigzag chain along the crystallographic b axis via intermolecular hydrogen bonds.  相似文献   

16.
Four new podocarpane‐type trinorditerpenenes, (5β,10α)‐12,13‐dihydroxypodocarpa‐8,11,13‐trien‐3‐one ( 1 ), (5β,10α)‐12‐hydroxy‐13‐methoxypodocarpa‐8,11,13‐trien‐3‐one ( 2 ), (5β,10α)‐13‐hydroxy‐12‐methoxypodocarpa‐8,11,13‐trien‐3‐one ( 3 ), and (3α,5β,10α)‐13‐methoxypodocarpa‐8,11,13‐triene‐3,12‐diol ( 4 ), together with four known diterpenes, 12‐hydroxy‐13‐methylpodocarpa‐8,11,13‐trien‐3‐one ( 5 ), spruceanol ( 6 ), ent‐3α‐hydroxypimara‐8(14),15‐dien‐12‐one ( 7 ), and ent‐3β,14α‐hydroxypimara‐7,9(11),15‐triene‐12‐one ( 8 ), were isolated from the twigs and leaves of Aleurites moluccana. Their structures were elucidated by means of comprehensive spectroscopic analyses, including NMR and MS. Except 8 , all compounds were evaluated for their cytotoxicity; compound 4 exhibited moderate inhibitory activity against Raji cells with an IC50 value of 4.24 μg/ml.  相似文献   

17.
New complexes [(η6p‐cymene)Ru(C5H4N‐2‐CH=N–Ar)X]PF6 [X = Br ( 1 ), I ( 2 ); Ar = 4‐fluorophenyl ( a ), 4‐chlorophenyl ( b ), 4‐bromophenyl ( c ), 4‐iodophenyl ( d ), 2,5‐dichlorophenyl ( e )] were prepared, as well as 3a – 3e (X = Cl) and the new complexes [(η6‐arene)RuCl(N‐N)]PF6 (arene = C6H5OCH2CH2OH, N‐N = 2,2′‐bipyridine ( 4 ), 2,6‐(dimethylphenyl)‐pyridin‐2‐yl‐methylene amine ( 5 ), 2,6‐(diisopropylphenyl)‐pyridin‐2‐yl‐methylene amine ( 6 ); arene = p‐cymene, N‐N = 4‐(aminophenyl)‐pyridin‐2‐yl‐methylene amine ( 7 )]. X‐ray diffraction studies were performed for 1a , 1b , 1c , 1d , 2b , 5 , and 7 . Cytotoxicities of 1a – 1d and 2 were established versus human cancer cells epithelial colorectal adenocarcinoma (Caco‐2) (IC50: 35.8–631.0 μM), breast adenocarcinoma (MCF7) (IC50: 36.3–128.8.0 μM), and hepatocellular carcinoma (HepG2) (IC50: 60.6–439.8 μM), 3a – 3e were tested against HepG2 and Caco‐2, and 4 – 7 were tested against Caco‐2. 1 – 7 were tested against non‐cancerous human epithelial kidney cells. 1 and 2 were more selective towards tumor cells than the anticancer drug 5‐fluorouracil (5‐FU), but 3a – 3e (X = Cl) were not selective. 1 and 2 had good activity against MCF7, some with lower IC50 than 5‐FU. Complexes with X = Br or I had moderate activity against Caco‐2 and HepG2, but those with Cl were inactive. Antibacterial activities of 1a , 2b , 3a , and 7 were tested against antibacterial susceptible and resistant Gram‐negative and ‐positive bacteria. 1a , 2b , and 3a showed activity against methicillin‐resistant S. aureus (MIC = 31–2000 μg · mL–1).  相似文献   

18.
The molecules of racemic 3‐benzoylmethyl‐3‐hydroxyindolin‐2‐one, C16H13NO3, (I), are linked by a combination of N—H...O and O—H...O hydrogen bonds into a chain of centrosymmetric edge‐fused R22(10) and R44(12) rings. Five monosubstituted analogues of (I), namely racemic 3‐hydroxy‐3‐[(4‐methylbenzoyl)methyl]indolin‐2‐one, C17H15NO3, (II), racemic 3‐[(4‐fluorobenzoyl)methyl]‐3‐hydroxyindolin‐2‐one, C16H12FNO3, (III), racemic 3‐[(4‐chlorobenzoyl)methyl]‐3‐hydroxyindolin‐2‐one, C16H12ClNO3, (IV), racemic 3‐[(4‐bromobenzoyl)methyl]‐3‐hydroxyindolin‐2‐one, C16H12BrNO3, (V), and racemic 3‐hydroxy‐3‐[(4‐nitrobenzoyl)methyl]indolin‐2‐one, C16H12N2O5, (VI), are isomorphous in space group P. In each of compounds (II)–(VI), a combination of N—H...O and O—H...O hydrogen bonds generates a chain of centrosymmetric edge‐fused R22(8) and R22(10) rings, and these chains are linked into sheets by an aromatic π–π stacking interaction. No two of the structures of (II)–(VI) exhibit the same combination of weak hydrogen bonds of C—H...O and C—H...π(arene) types. The molecules of racemic 3‐hydroxy‐3‐(2‐thienylcarbonylmethyl)indolin‐2‐one, C14H11NO3S, (VII), form hydrogen‐bonded chains very similar to those in (II)–(VI), but here the sheet formation depends upon a weak π–π stacking interaction between thienyl rings. Comparisons are drawn between the crystal structures of compounds (I)–(VII) and those of some recently reported analogues having no aromatic group in the side chain.  相似文献   

19.
From the petroleum‐ether extract of the dried aerial parts of Hypericum papuanum, three new prenylated tricyclic and four new bicyclic acylphloroglucinol derivatives were isolated by bioactivity‐guided fractionation. The structures of the bicyclic compounds enaimeone A, B, and C ( 1 / 1a , 2 / 2a , and 3 / 3a , resp.) were elucidated as rel‐(1R,5R,6S)‐4‐hydroxy‐6‐(1‐hydroxy‐1‐methylethyl)‐5‐methyl‐1‐(3‐methylbut‐2‐enyl)‐3‐(2‐methylpropanoyl)‐bicyclo[3.2.1]oct‐3‐ene‐2,8‐dione ( 1 / 1a ), rel‐(1R,5R,6R)‐4‐hydroxy‐6‐(1‐hydroxy‐1‐methylethyl)‐5‐methyl‐1‐(3‐methylbut‐2‐enyl)‐3‐(2‐methylpropanoyl)bicyclo[3.2.1]oct‐3‐ene‐2,8‐dione ( 2 / 2a ), rel‐(1R,5R,6R)‐4‐hydroxy‐6‐(1‐hydroxy‐1‐methylethyl)‐5‐methyl‐3‐(2‐methylbutanoyl)‐1‐(3‐methylbut‐2‐enyl)bicyclo[3.2.1]oct‐3‐ene‐2,8‐dione ( 3 / 3a ). The tricyclic isolates 8‐hydroxy‐3β‐(1‐hydroxy‐1‐methylethyl)‐4,4,7‐trimethyl‐9‐(2‐methylpropanoyl)‐5βH‐tricyclo[5.3.1.01,5]undec‐8‐ene‐10,11‐dione ( 4 ), 8‐hydroxy‐3α‐(1‐hydroxy‐1‐methylethyl)‐4,4,7‐trimethyl‐9‐(2‐methylpropanoyl)‐5βH‐tricyclo[5.3.1.01,5]undec‐8‐ene‐10,11‐dione ( 5 ), and 8‐hydroxy‐3α‐(1‐hydroxy‐1‐methylethyl)‐4,4,7‐trimethyl‐9‐(2‐methylbutanoyl)‐5βH‐tricyclo[5.3.1.01,5]undec‐8‐ene‐10,11‐dione ( 6 ), and their corresponding tautomers 4a , 5a , and 6a , were named 1′‐hydroxyialibinones A, B, and D, respectively. Oxidative decomposition of furonewguinone A (=2,3,3a,5‐tetrahydro‐3a‐hydroxy‐2‐(1‐hydroxy‐1‐methylethyl)‐5‐methyl‐5‐(3‐methylbut‐2‐enyl)‐7‐(2‐methylpropanoyl)‐benzofuran‐4,6‐dione; 7 ) led to furonewguinone B (=3,3a,7,7a‐tetrahydro‐3a,6,7a‐trihydroxy‐2‐(1‐hydroxy‐1‐methylethyl)‐7‐methyl‐7‐(3‐methylbut‐2‐enyl)‐5‐(2‐methylpropanoyl)benzofuran‐4(2H)‐one; 8 / 8a ). Structure elucidation was based on extensive 1D and 2D NMR studies, as well as on data derived from mass spectrometry. Furthermore, the cytotoxicity towards KB nasopharyngeal carcinoma cells and the antibacterial activity were determined.  相似文献   

20.
The absolute configurations of spongia‐13(16),14‐dien‐3‐one [systematic name: (3bR,5aR,9aR,9bR)‐3b,6,6,9a‐tetramethyl‐4,5,5a,6,8,9,9a,9b,10,11‐decahydrophenanthro[1,2‐c]furan‐7(3bH)‐one], C20H28O2, (I), epispongiadiol [systematic name: (3bR,5aR,6S,7R,9aR,9bR)‐7‐hydroxy‐6‐hydroxymethyl‐3b,6,9a‐trimethyl‐3b,5,5a,6,7,9,9a,9b,10,11‐decahydrophenanthro[1,2‐c]furan‐8(4H)‐one], C20H28O4, (II), and spongiadiol [systematic name: (3bR,5aR,6S,7S,9aR,9bR)‐7‐hydroxy‐6‐hydroxymethyl‐3b,6,9a‐trimethyl‐3b,5,5a,6,7,9,9a,9b,10,11‐decahydrophenanthro[1,2‐c]furan‐8(4H)‐one], C20H28O4, (III), were assigned by analysis of anomalous dispersion data collected at 130 K with Cu Kα radiation. Compounds (II) and (III) are epimers. The equatorial 3‐hydroxyl group on the cyclohexanone ring (A) of (II) is syn with respect to the 4‐hydroxymethyl group, leading to a chair conformation. In contrast, isomer (III), where the 3‐hydroxyl group is anti to the 4‐hydroxymethyl group, is conformationally disordered between a major chair conformer where the OH group is axial and a minor boat conformer where it is equatorial. In compound (I), a carbonyl group is present at position 3 and ring A adopts a distorted‐boat conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号