首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A number of new dialkyl 2‐(alkyl or aryl)‐6‐(pyrimidin‐2‐ylthio)‐4‐thioxo‐5,6‐dihydro‐4H‐1,3‐oxazine‐5,6‐dicarboxylate have been prepared in good yield from the multicomponent reaction between 2‐mercaptopyrimidines and acetylenic diesters with acetyl or benzoyl isothiocyanate.  相似文献   

2.
7‐Benzyl‐3‐tert‐butyl‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H25N3O, (I), and 3‐tert‐butyl‐7‐(4‐methylbenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O, (II), are isomorphous in the space group P21, and molecules are linked into chains by C—H...O hydrogen bonds. In each of 3‐tert‐butyl‐7‐(4‐methoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O2, (III), which has cell dimensions rather similar to those of (I) and (II), also in P21, and 3‐tert‐butyl‐1‐phenyl‐7‐[4‐(trifluoromethyl)benzyl]‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H24F3N3O, (IV), there are no direction‐specific interactions between the molecules. In 3‐tert‐butyl‐7‐(4‐nitrobenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H24N4O3, (V), a combination of C—H...O and C—H...N hydrogen bonds links the molecules into complex sheets. There are no direction‐specific interactions between the molecules of 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C24H29N3O3, (VI), but a three‐dimensional framework is formed in 3‐tert‐butyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H25N3O3, (VII), by a combination of C—H...O, C—H...N and C—H...π(arene) hydrogen bonds, while a combination of C—H...O and C—H...π(arene) hydrogen bonds links the molecules of 3‐tert‐butyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C25H31N3O4, (VIII), into complex sheets. In each compound, the oxazine ring adopts a half‐chair conformation, while the orientations of the pendent phenyl and tert‐butyl substituents relative to the pyrazolo[3,4‐d]oxazine unit are all very similar.  相似文献   

3.
The cycloaddition reaction of cyclic imidates, 2‐benzyl‐5,6‐dihydro‐4H‐1,3‐oxazines 1a , 1b , 1c , 1d , 1e , 1f , with dimethyl acetylenedicarboxylate 2 , trimethyl ethylenetricarboxylate 4 , or dimethyl 2‐(methoxymethylene)malonate 6 afforded new fused heterocyclic compounds, such as methyl (6‐oxo‐3,4‐dihydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐ylidene)acetates 3a , 3b , 3c , 3d , 3e , 3f (71–79%), dimethyl 2‐(6‐oxo‐3,4,6,7‐tetrahydro‐2H‐pyrrolo[2,1‐b]‐1,3‐oxazin‐7‐yl)malonates 5b , 5c , 5d , 5e , 5f (43–71%), or methyl 6‐oxo‐3,4‐dihydro‐2H,6H‐pyrido[2,1‐b]‐1,3‐oxazine‐7‐carboxylates 7a , 7b , 7c , 7d , 7e , 7f (32–59%), respectively. In these reactions, 1a , 1b , 1c , 1d , 1e , 1f (cyclic imidates, iminoethers) functioned as their N,C‐tautomers (enaminoethers) 2 to α,β‐unsaturated esters 2 , 4, and 6 to give annulation products 3 , 5 , and 7 following to the elimination of methanol, respectively. J. Heterocyclic Chem., (2011).  相似文献   

4.
The structure of methyl (6R)‐6‐(3′β‐acetoxy‐5′‐androsten‐17′β‐yl)‐2‐phenyl‐5,6‐dihydro‐4H‐[1,3]oxazine, C31H41NO3, synthesized from an azidopregnene derivative, is reported. The di­hydro‐1,3‐oxazine ring is connected in the β position to the sterane skeleton at C‐17′. An R configuration was found at C‐6.  相似文献   

5.
1‐(β‐d ‐Erythrofuranosyl)cytidine, C8H11N3O4, (I), a derivative of β‐cytidine, (II), lacks an exocyclic hydroxy­methyl (–CH2OH) substituent at C4′ and crystallizes in a global conformation different from that observed for (II). In (I), the β‐d ‐erythrofuranosyl ring assumes an E3 conformation (C3′‐exo; S, i.e. south), and the N‐glycoside bond conformation is syn. In contrast, (II) contains a β‐d ‐ribofuranosyl ring in a 3T2 conformation (N, i.e. north) and an anti‐N‐glycoside linkage. These crystallographic properties mimic those found in aqueous solution by NMR with respect to furan­ose conformation. Removal of the –CH2OH group thus affects the global conformation of the aldofuranosyl ring. These results provide further support for S/syn–anti and N/anti correlations in pyrimidine nucleosides. The crystal structure of (I) was determined at 200 K.  相似文献   

6.
Synthesis and Reactivity of 2‐Bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborole Molecular Structure of Bis(1,3‐diethyl‐2,3‐dihydro‐1 H ‐1,3,2‐benzodiazaborol‐2‐yl The reaction of a slurry of calcium hydride in toluene with N,N′‐diethyl‐o‐phenylenediamine ( 1 ) and boron tribromide affords 2‐bromo‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol ( 2 ) as a colorless oil. Compound 2 is converted into 2‐cyano‐1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 3 ) by treatment with silver cyanide in acetonitrile. Reaction of 2 with an equimolar amount of methyllithium affords 1,3‐diethyl‐2‐methyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborole ( 4 ). 1,3,2‐Benzodiazaborole is smoothly reduced by a potassium‐sodium alloy to yield bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐yl] ( 7 ), which crystallizes from n‐pentane as colorless needles. Compound 7 is also obtained from the reaction of 2 and LiSnMe3 instead of the expected 2‐trimethylstannyl‐1,3,2‐benzodiazaborole. N,N′‐Bis(1,3‐diethyl‐2,3‐dihydro‐1 H‐1,3,2‐benzodiazaborol‐2‐ yl)‐1,2‐diamino‐ethane ( 6 ) results from the reaction of 2 with Li(en)C≡CH as the only boron containing product. Compounds 2 – 4 , 6 and 7 are characterized by means of elemental analyses and spectroscopy (IR, 1H‐, 11B{1H}‐, 13C{1H}‐NMR, MS). The molecular structure of 7 was elucidated by X‐ray diffraction analysis.  相似文献   

7.
3‐Alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones ( 2 ) and 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) react in boiling concentrated HCl to give 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ). The same compounds were prepared by the same procedure from 2‐alkyl/aryl‐3‐ureido‐1H‐indoles ( 4 ), which were obtained from the reaction of 3‐alkyl/aryl‐3‐aminoquinoline‐2,4(1H,3H)‐diones ( 1 ) with 1,3‐diphenylurea or by the transformation of 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) and 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ) in boiling AcOH. The latter were converted into 1,3‐bis[2‐(2‐oxo‐2,3‐dihydro‐1H‐imidazol‐4‐yl)phenyl]ureas ( 5 ) by treatment with triphosgene. All compounds were characterized by 1H‐ and 13C‐NMR and IR spectroscopy, as well as atmospheric pressure chemical‐ionisation mass spectra.  相似文献   

8.
The conformational isomers endo‐ and exo‐[Mo{η3‐C3H4(CH3)}(η2‐pyS)(CO)(η2‐diphos)] (diphos: dppm = {bis(diphenylphosphino)methane}, 2 ; dppe = {1,2‐bis(diphenylphosphino)ethane}, 3 ) are prepared by reacting the double‐bridged pyridine‐2‐thionate (pyS) complex [Mo{η3‐C3H4(CH3)}(CO)2]212:μ‐pyS)2, 1 with diphos in refluxing acetonitrile. Stereoselectivity of the methallyl, C3H4(CH3), ligand improves the formation of the exo‐conformation of 2 and 3 . Orientations and spectroscopy of these complexes are discussed.  相似文献   

9.
Like α‐amino acids, β‐ and γ‐amino acids form spirobicyclic complexes (see 2 and 3 ) by reaction with the chiral di‐μ‐chlorobis{2‐[1‐dimethylamino‐ϰN)‐ethyl]phenyl‐ϰC}dipalladium complexes 1 under basic conditions (Scheme 1 and X‐ray structures in Fig. 1). The diastereoisomeric complexes formed with mixtures of enantiomers of either the amino acids or the dichloro‐dipalladium complexes give rise to marked chemical‐shift differences in the 1H‐ and 13C‐NMR spectra (Figs. 2 – 4) to allow determination of the enantiomer purities. A simple procedure is described by which β‐ and γ‐amino acids (which may be generated in situ from Boc‐ or Fmoc‐protected precursors) are converted to the Pd complexes and subjected to NMR measurements. The effects of solvent, temperature, and variation of the aryl group in the chiral derivatizing Pd reagent are described (Figs. 4 and 5). The methyl esters of β‐amino acids can also be employed, forming diastereoisomeric chloro[(amino‐ϰN)aryl‐ϰC][(amino‐ϰN)alkanoate]palladium complexes 6 for determining enantiomer ratios (Scheme 6). The new method has great scope, as demonstrated for β2‐, β3‐, β2,3‐, β2,2,3‐, γ2‐, γ3‐, γ4‐, and γ2,3,4‐amino acid derivatives.  相似文献   

10.
Novel derivatives of pyrazino[2,1‐a]isoindolediones were synthesized through 6‐exodig intramolecular hydroamination of 2,3‐dihydro‐3‐oxo‐2‐(prop‐2‐yn‐1‐yl)‐1H‐isoindole‐1‐carboxamides followed by 1,3‐H shift, in the presence of sodium hydride in DMF at 80°. All products were obtained in good yields (60 – 80%) within short reaction time (40 – 60 min).  相似文献   

11.
The unusual 12‐membered ring compound, octahydro‐5H,12H‐4,11‐methano‐1H,7H‐bis[1,2,5]oxadiazolo[3,4‐d:3′,4′‐j][1,7,3,9]dioxadiazacyclododecine is obtained from the acid catalyzed reaction of 3‐amino‐4‐hydroxymethylfurazan with formaldehyde instead of the expected methylene‐bridged compound, 4,4′‐methylenebis[4,5‐dihydro‐7H‐[1,2,5]oxadiazolo[3,4‐d][1,3]oxazine]. The compound crystallizes in Tetragonal, P43212, a = 6.4141(4) Å, b = 6.4141(4) Å, c = 26.525(3) Å, α = 90°, β = 90°, γ = 90°, V = 1091.27(16) Å3, Z = 4, dcalc = 1.614 Mg/m3.  相似文献   

12.
Summary: The ring‐opening polymerizations of 2‐phenyl‐5,6‐dihydro‐4H‐1,3‐oxazine (PhOZI) with methyl tosylate (MeOTs) and butyl iodide (BuI) as initiators were performed in refluxing butyronitrile. Reaction kinetics under microwave irradiation was compared with conventional oil bath heating. The polymerization rates, under microwave irradiation, showed an acceleration by a factor of 1.8 (independently from the used initiator). The investigation of the thermal properties of the obtained poly(N‐benzoyl‐trimethyleneimine) showed the influence of molecular weight and end‐groups on the glass transition temperature.

The ring‐opening polymerizations of 2‐phenyl‐5,6‐dihydro‐4H‐1,3‐oxazine performed in refluxing butyronitrile.  相似文献   


13.
The aldol reaction of the C(3) carbanion of 7‐chloro‐1,3‐dihydro‐1‐methyl‐5‐phenyl‐2H‐1,4‐benzodiazepin‐2‐one ( 2 ) with a series of aromatic and aliphatic aldehydes at −78° afforded threo/erythro diastereoisomers 3 – 16 of 7‐chloro‐1,3‐dihydro‐3‐(hydroxymethyl)‐1‐methyl‐5‐phenyl‐2H‐1,4‐benzodiazepinones, substituted at the C(3) side chain, in a ratio from 55 : 45 to 94 : 6 (Scheme 1). Lewis acids exhibited limited effect on the syn/anti diastereoselectivity of this reaction, and kinetic control of the reaction was confirmed. 1H‐NMR Data suggested the assignment of the threo relative configuration to the first‐eluted diastereoisomers 3 , 5 , 7 , and 9 on reversed‐phase HPLC, and the erythro configuration to the second‐eluted counterparts 4 , 6 , 8 , and 10 , respectively. The structures and relative configurations threo and erythro of the diastereoisomers 5 and 6 , respectively, were established by single‐crystal X‐ray analysis, confirming the assignment based on the 1H‐NMR data. A tentative mechanistic explanation of the diastereoselectivity invokes the enolate anion of 1,3‐dihydro‐2H‐1,4‐benzodiazepin‐2‐one as the reactive species (Scheme 2). Acid‐catalyzed hydrolytic ring opening of 3 afforded threoβ‐hydroxy‐phenylalanine 17 , whereas from 4 , the N‐(benzyloxy)carbonyl derivative 18 of erythro‐β‐hydroxy‐phenylalanine was obtained (Scheme 3); in both cases, neither elimination of H2O from the C(3)−CHOH moiety nor epimerization at C(3) were observed. This result opens a new pathway to various configurationally uniform α‐amino‐β‐hydroxy carboxylic acids and their congeners of biological importance.  相似文献   

14.
The addition of reactive carbanions to (η4‐1,3‐diene)Fe(CO)3 complexes at ?78 °C and 25 °C produced putative homoallyl and allyl anion complexes, respectively. Reaction of the reactive intermediates with 2‐(phenylsulfonyl)‐3‐phenyloxaziridine afforded nucleophilic substituted (η4‐1,3‐diene)Fe(CO)3 complexes.  相似文献   

15.
Three 1,3‐bridged polycyclic cyclopropenes, exo‐8‐oxatricyclo[3.2.1.02,4]octa‐2,6‐diene ( 10 ), endo‐8‐oxatricyclo[3.2.1.02,4]octa‐2,6‐diene ( 11 ), and exo‐6,7‐benzo‐1,5‐diphenyl‐8‐oxatricyclo[3.2.1.02,4]octa‐2,6‐diene ( 12 ), have been synthesized by elimination of 2‐chloro‐3‐trimethylsilyl‐8‐oxatricyclo[3.2.1.02,4]‐oct‐6‐enes, 17 , 18 and 30 , which were generated from 1‐chloro‐3‐trimethylsilylcyclopropene with furan and diphenylisobenzofuran. We have demonstrated a facile route to synthesize the highly strained 1,3‐fused polycyclic cyclopropenes, 10 , 11 , and 12 . The stereochemistry of the Diels‐Alder reactions of cyclopropene 16 with furan and DPIBF are different. Cyclopropene 16 was treated with furan to form exo‐exo and endo‐exo adducts (5:2) and treated with DPIBF to generate an exo‐exo adduct. Compounds 10 , 11 and 12 undergo isomerization reactions to form benzaldehyde and phenyl 4‐phenyl‐[1]naphthyl ketone to release strain energies via diradical mechanisms.  相似文献   

16.
The cross‐aldolization of (−)‐(1S,4R,5R,6R)‐6‐endo‐chloro‐5‐exo‐(phenylseleno)‐7‐oxabicyclo[2.2.1]heptan‐2‐one ((−)‐ 25 ) and of (+)‐(3aR,4aR,7aR,7bS)‐ ((+)‐ 26 ) and (−)‐(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazole‐3‐carbaldehyde ((−)‐ 26 ) was studied for the lithium enolate of (−)‐ 25 and for its trimethylsilyl ether (−)‐ 31 under Mukaiyama's conditions (Scheme 2). Protocols were found for highly diastereoselective condensation giving the four possible aldols (+)‐ 27 (`anti'), (+)‐ 28 (`syn'), 29 (`anti'), and (−)‐ 30 (`syn') resulting from the exclusive exo‐face reaction of the bicyclic lithium enolate of (−)‐ 25 and bicyclic silyl ether (−)‐ 31 . Steric factors can explain the selectivities observed. Aldols (+)‐ 27 , (+)‐ 28 , 29 , and (−)‐ 30 were converted stereoselectively to (+)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aR,4aR,7aR,7bS)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]‐furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((+)‐ 62 ), its epimer at the exocyclic position (+)‐ 70 , (−)‐1,4‐anhydro‐3‐{(S)‐[(tert‐butyl)dimethylsilyloxy][(3aS,4aS,7aS,7bR)‐3a,4a,7a,7b‐tetrahydro‐6,6‐dimethyl[1,3]dioxolo[4,5]furo[2,3‐d]isoxazol‐3‐yl]methyl}‐3‐deoxy‐2,6‐di‐O‐(methoxymethyl)‐α‐D ‐galactopyranose ((−)‐ 77 ), and its epimer at the exocyclic position (+)‐ 84 , respectively (Schemes 3 and 5). Compounds (+)‐ 62 , (−)‐ 77 , and (+)‐ 84 were transformed to (1R,2R,3S,7R,8S,9S,9aS)‐1,3,4,6,7,8,9,9a‐octahydro‐8‐[(1R,2R)‐1,2,3‐trihydroxypropyl]‐2H‐quinolizine‐1,2,3,7,9‐pentol ( 21 ), its (1S,2S,3R,7R,8S,9S,9aR) stereoisomer (−)‐ 22 , and to its (1S,2S,3R,7R,8S,9R,9aR) stereoisomer (+)‐ 23 , respectively (Schemes 6 and 7). The polyhydroxylated quinolizidines (−)‐ 22 and (+)‐ 23 adopt `trans‐azadecalin' structures with chair/chair conformations in which H−C(9a) occupies an axial position anti‐periplanar to the amine lone electron pair. Quinolizidines 21 , (−)‐ 22 , and (+)‐ 23 were tested for their inhibitory activities toward 25 commercially available glycohydrolases. Compound 21 is a weak inhibitor of β‐galactosidase from jack bean, of amyloglucosidase from Aspergillus niger, and of β‐glucosidase from Caldocellum saccharolyticum. Stereoisomers (−)‐ 22 and (+)‐ 23 are weak but more selective inhibitors of β‐galactosidase from jack bean.  相似文献   

17.
Syntheses, Structures, Electrochemistry and Optical Properties of Alkyne‐Functionalized 1,3,2‐Diazaboroles and 1,3,2‐Diazaborolidenes The reaction of 2‐bromo‐1,3‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 3 ) with lithiated tert‐butyl‐acetylene and lithiated phenylacetylene affords the 2‐alkynyl‐functionalized 1,3,2‐diazaboroles 4 and 5 as a thermolabile colorless oil ( 4 ) or a solid ( 5 ). Similarly 2‐bromo‐1,3‐diethyl‐2,3‐dihydro‐1H‐1,3,2‐benzodiazaborole ( 6 ) was converted into the crystalline 2‐alkynyl‐benzo‐1,3,2‐diazaboroles 7 and 8 by treatment with LiC≡C–tBu or LiC≡CPh, respectively. 2‐Ethynyl‐1,3‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 2 ) was metalated with tert‐butyl‐lithium and subsequently coupled with 2‐bromo‐1,3,‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborole ( 3 ) to afford bis(1,3‐ditert‐butyl‐2,3‐dihydro‐1H‐1,3,2‐diazaborol‐2‐yl)acetylene ( 9 ) as thermolabile colorless crystals. Analogously coupling of the lithiated species with 6 or with 2‐bromo‐1,3‐ditert‐butyl‐1,3,2‐diazaborolidine ( 11 ) gave the unsymmetrically substituted acetylenes 10 or 12 , respectively, as colorless solids. Compounds 4 , 5 , 7 – 10 and 12 are characterized by elemental analyses and spectroscopy (IR, 1H‐, 11B{1H}, 13C{1H}‐NMR, MS). The molecular structures of 5 , 8 and 9 were elucidated by X‐ray diffraction analyses.  相似文献   

18.
A twofold interpenetrating three‐dimensional CdII coordination framework, [Cd(C8H3NO6)(C14H14N4)]n, has been prepared and characterized by IR spectroscopy, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. The asymmetric unit consists of a divalent CdII atom, one 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene (1,3‐BMIB) ligand and one fully deprotonated 5‐nitrobenzene‐1,3‐dicarboxylate (NO2‐BDC2−) ligand. The coordination sphere of the CdII atom consists of five O‐donor atoms from three different NO2‐BDC2− ligands and two imidazole N‐donor atoms from two different 1,3‐BMIB ligands, forming a distorted {CdN2O5} pentagonal bipyramid. The NO2‐BDC ligand links three CdII atoms via a μ1‐η11 chelating mode and a μ2‐η21 bridging mode. The title compound is a twofold interpenetrating 3,5‐connected network with the {42.65.83}{42.6} topology. In addition, the compound exhibits fluorescence emissions in the solid state at room temperature.  相似文献   

19.
(E)‐2‐[2‐(1‐Substituted ethylidene)hydrazinyl]‐5‐oxo‐9b‐hydroxy‐5,9b‐dihydroindeno[1,2‐d][1,3]‐thiazine‐4‐carbonitriles and (E)‐5‐oxo‐[(E)‐(1‐substituted ethylidene)hydrazinyl]‐2,5‐dihydroindeno[1,2‐d][1,3]thiazine‐4‐carbonitriles have been obtained from the reaction of 2‐(substituted ethylidene)hydrazinecarbothioamides with 2‐(1,3‐dioxo‐2,3‐dihydro‐1H‐inden‐2‐ylidene)propanedinitrile ( 1 ) in ethyl acetate solution. However, (Z)‐6′‐amino‐1,3‐dioxo‐3′‐substituted‐2′‐[(E)‐(1‐phenylethylidene)hydrazono]‐1,2′,3,3′‐tetrahydrospiro(indene‐2,4′‐[1,3]thiazine)‐5′‐carbonitriles were observed during the reaction of N‐substituted‐2‐(1‐phenylethylidene)hydrazinecarbothioamides with ( 1 ). The structure assignment of products has been confirmed on the basis of 1H‐, 13C‐NMR, and mass spectrometry, as well as theoretical calculations.  相似文献   

20.
Two efficient and diastereoselective procedures for the synthesis of (Z)‐6‐(2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐diones by aldol‐crotonic condensation of 1,3‐dimethyl‐3a,9a‐diphenyl‐3,3a,9,9a‐tetrahydroimidazo[4,5‐e]thiazolo[3,2‐b]‐1,2,4‐triazin‐2,7(1H,6H)‐dione with isatins under acidic or basic catalysis are reported. Isomerization in (Z)‐7‐(1‐allyl‐2‐oxo‐1,2‐dihydro‐3H‐indol‐3‐ylidene)‐1,3‐dimethyl‐3a,9a‐diphenyl‐1,3a,4,9a‐tetrahydroimidazo[4,5‐e]thiazolo[2,3‐c]‐1,2,4‐triazin‐2,8(3H,7H)‐dione was observed under basic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号