首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of capillary isotachophoresis (ITP), operating in a discontinuous fractionation mode, for preparative separations of enantiomers of chiral compounds was studied. The ITP separations were carried out in the column-coupling configuration of the separation unit provided with the preseparation column of a 1.0 mm ID and the trapping column of a 0.8 mm ID. Such a configuration of the CE separation unit offers several working regimes suitable to preparative separations of enantiomers. 2,4-Dinitrophenyl-DL-norleucine (DNP-Norleu) was employed as a model analyte in our experiments with beta-cyclodextrin serving in the electrolyte solutions as a chiral selector. The preparative separations lasting about 20 min were evaluated by ITP and (more often) by capillary zone electrophoresis (CZE). It was found that one preparative run provided up to 14 microg of pure DNP-Norleu enantiomers. This corresponded to a 75 times higher production rate of ITP relative to a maximum value of this parameter as estimated for preparative CZE runs in cylindrical capillaries (0.5 pmol/s). About 75% of the DNP-Norleu enantiomers loaded into the preparative equipment could be recovered in pure enantiomer fractions. Contiguous natures of the zones in the ITP stack and adsorption losses of the enantiomers in the isolation step were found to set practical limits for a further enhancement of the recovery rates in the isolation of pure enantiomers.  相似文献   

2.
This feasibility study deals with the use of a wide bore (320 μm I.D.) capillary tube for the detection and identification of capillary zone electrophoresis (CZE) analytes by optical fiber-coupled diode array detection. A 250-μm mean effective pathlength of the detection cell with an inherently enhanced photon flux through the cell were significant contributors in reaching 0.2–1 μmol/l concentration detectabilities of the CZE analytes by this combination. Experiments with model analytes (p-sulfanilic, sorbic and naphthalene-2-sulfonic acids, tryptophan and asulam) revealed that spectral confirmations of their identities were still possible when their concentrations in the loaded samples (200 nl) were 1–5 μmol/l. Here, chemometry procedures (target transformation factor analysis, fixed size moving window-target transformation factor analysis, fixed size moving window-evolving factor analysis and orthogonal projection approach) employed in the data processing effectively contributed to reliable confirmation of the identities of the analytes also in critical situations (e.g. peak overlaps). The CZE separations were carried out in tandem-coupled columns of identical I.D. This made it possible to use, in the first column of the tandem, carrier electrolyte solutions that provide the desired separative effects, while in the second (detection) column the compositions of the carrier electrolyte solutions employed could reflect favorable conditions for obtaining spectral data. Mixtures containing model constituents at significantly differing concentrations and Maillard’s reaction products spiked with tryptophan enantiomers were employed in experiments aimed at assessing practical applicabilities and limits of the present approach to the analysis of samples characterized by complex ionic matrices.  相似文献   

3.
A new multidimensional analytical approach for the ultra‐trace determination of target chiral compounds in unpretreated complex real samples was developed in this work. The proposed analytical system provided high orthogonality due to on‐line combination of three different methods (separation mechanisms), i.e. (1) isotachophoresis (ITP), (2) chiral capillary zone electrophoresis (chiral CZE), and (3) triple quadrupole mass spectrometry (QqQ MS). The ITP step, performed in a large bore capillary (800 μm), was utilized for the effective sample pretreatment (preconcentration and matrix clean‐up) in a large injection volume (1–10 μL) enabling to obtain as low as ca. 80 pg/mL limits of detection for the target enantiomers in urine matrices. In the chiral CZE step, the different chiral selectors (neutral, ionizable, and permanently charged cyclodextrins) and buffer systems were tested in terms of enantioselectivity and influence on the MS detection response. The performance parameters of the optimized ITP – chiral CZE‐QqQ MS method were evaluated according to the FDA guidance for bioanalytical method validation. Successful validation and application (enantioselective monitoring of renally eliminated pheniramine and its metabolite in human urine) highlighted great potential of this chiral approach in advanced enantioselective biomedical applications.  相似文献   

4.
Chiral ITP of the weak base methadone using inverse cationic configurations with H+ as leading component and multiple isomer sulfated β‐CD (S‐β‐CD) as leading electrolyte (LE) additive, has been studied utilizing dynamic computer simulation, a calculation model based on steady‐state values of the ITP zones, and capillary ITP. By varying the amount of acidic S‐β‐CD in the LE composed of 3‐morpholino‐2‐hydroxypropanesulfonic acid and the chiral selector, and employing glycylglycine as terminating electrolyte (TE), inverse cationic ITP provides systems in which either both enantiomers, only the enantiomer with weaker complexation, or none of the two enantiomers form cationic ITP zones. For the configuration studied, the data reveal that only S‐methadone migrates isotachophoretically when the S‐β‐CD concentration in the LE is between about 0.484 and 1.113 mM. Under these conditions, R‐methadone migrates zone electrophoretically in the TE. An S‐β‐CD concentration between about 0.070 and 0.484 mM results in both S‐ and R‐methadone forming ITP zones. With >1.113 mM and < about 0.050 mM of S‐β‐CD in the LE both enantiomers are migrating within the TE and LE, respectively. Chiral inverse cationic ITP with acidic S‐β‐CD in the LE is demonstrated to permit selective ITP trapping and concentration of the less interacting enantiomer of a weak base.  相似文献   

5.
The possibility to apply charged chiral selector as buffer additive in capillary zone electrophoresis (CZE) on-line coupled with capillary isotachophoresis (CITP) was studied. Enantioseparations and determinations of trace (ng/ml) antihistaminic drugs [pheniramine (PHM), dimethindene (DIM), dioxopromethazine (DIO)] present in samples of complex ionic matrices (urine) served as model examples. A negatively charged carboxyethyl-β-cyclodextrin (CE-β-CD) was used as a chiral selector in analytical CZE stage following upon a sample pretreatment by CITP (preconcentration of the analytes from 5 to 20-times diluted urine samples, partial sample clean up removing macroconstituents from the sample matrices). A high recognition capability of the oppositely charged CE-β-CD was demonstrated by enantioselective retardation of the drugs in presence of micro-and semi-macroconstituents migrating in CZE stage and detectable by UV detector. In this way, enantiomers of the drugs could be easily separated and determined. Due to lack of interferences between the drugs and sample-matrix constituents in presence of charged CE-β-CD, demands on both spacers in CITP step and multiple column-switching were minimized. CITP-CZE method with charged selector appeared to be a useful analytical approach for the trace enantiomers in complex ionic matrices as it combined enhanced separation selectivity and sample loadabitlity with high separation efficiency and provided favorable performance parameters including sensitivity, linearity, precision, accuracy/recovery and robustness with minimal demands on sample preparation. Analysis of urine sample taken from a patient treated by PHM, showing concentration profile of PHM enantiomers and their metabolites, illustrated potentialities of the method in clinical research.  相似文献   

6.
Application potentialities of CZE on-line coupled with capillary ITP and DAD to the identification and determination of trace concentration levels (microg/L) of pheniramine (PHM) enantiomers and their metabolites present in complex ionic matrices of biological origin (urine) are shown. An enhanced (enantio)selectivity of the CZE separation system obtained by the addition of carboxyethyl-beta-CD (CE-beta-CD) to the carrier electrolyte provided CZE conditions for a reliable identification of similar/identical DAD spectra of structurally related compounds (PHM enantiomers and their metabolites) in clinical urine samples differing in qualitative and quantitative composition of sample matrix constituents. A high sample loadability (a 30 microL sample injection volume), partial sample clean-up (removing macroconstituents from the sample), and preconcentration of the analytes in ITP stage resulted in the decrease of concentration LOD for PHM enantiomers in urine to 5.2 and 6.8 microg/L (2.2 x 10(-8) and 2.8 x 10(-8) mol/L), without using any sample pretreatment technique. The background correction and smoothing procedure applied to the raw DAD spectra provided analytically relevant DAD spectra of PHM enantiomers and their metabolites also when they were present in urine sample (30 microL injection volumes of ten-times diluted urine sample) at a 9 x 10(-) (8) mol/L concentration. DAD spectra of PHM enantiomers present in urine samples matched their reference spectra with reasonable certainties. DAD spectra of PHM metabolites were compared with the reference spectra of PHM enantiomers and a good match was found which indicates the similarities in the structures of enantiomers and their metabolites detected in the urine samples. This fact allows performing the quantitative analyses of PHM metabolites in the urine samples by applying the calibration parameters of PHM enantiomers also for PHM metabolites and the results show the possibilities of using the ITP-CZE-DAD combination for the direct analysis of PHM enantiomers and/or their metabolites in urine without any sample pretreatment. ITP-CZE-DAD method with oppositely charged selector is suggested to use in clinical research as it provides favorable performance parameters including sensitivity, linearity, precision, recovery, and robustness with minimal demands on sample preparation.  相似文献   

7.
Analytical capabilities of capillary zone electrophoresis (CZE) with on-line coupled capillary isotachophoresis (ITP) sample pretreatment in the column-coupling capillary electrophoresis equipment to separate and determine enantiomers present in multicomponent ionic matrices were studied. Tryptophan was used as a model analyte in the ITP-capillary zone electrophoresis experiments performed in this context while a 90-component model mixture of UV-light absorbing organic anions and urine served as multicomponent sample matrices. Various working modes in which the on-line coupled capillary isotachophoresis-capillary zone electrophoresis combination in the column-coupling separation system can operate were employed in the anionic regime of the separation with direct injections of the samples. Advantages and limitations of these working modes in the separations of enantiomers present in model and urine matrices were assessed. Experiments with model mixtures of tryptophan enantiomers revealed that the two were resolved in the capillary zone electrophoresis stage with the aid of alpha-cyclodextrin also when their concentration ratio in the sample was 1:200 while the concentration of L(-)-tryptophan was 25 nmol/l. The limits of detection for the enantiomers were at approximately 10 nmol/l (approximately 1.5 ng/ml) concentrations for a 220 nm detection wavelength of the UV detector employed in the capillary zone electrophoresis stage and for a 30 microliters sample load. A high sample load capacity of the on-line coupled capillary isotachophoresis stage was effective in separating the samples corresponding to 3-6 microliters volumes of undiluted urine. The results from the runs with urine samples showed that only the capillary isotachophoresis-capillary zone electrophoresis combination with a post-column on-line coupled capillary isotachophoresis sample clean-up (responsible for a removal of more than 99% of the sample anionic constituents migrating in the on-line coupled capillary isotachophoresis stack and detectable in the capillary zone electrophoresis stage) provided a universal alternative for the detection and quantitation of the model analyte (L(-)-tryptophan).  相似文献   

8.
The use of a poly(methylmethacrylate) chip, provided with a pair of on-line coupled separation channels and on-column conductivity detectors, to isotachophoresis (ITP) separations of optical isomers was investigated. Single-column ITP, ITP in the tandem-coupled columns, and concentration-cascade ITP in the tandem-coupled columns were employed in this investigation using tryptophan enantiomers as model analytes. Although providing a high production rate (about 2 pmol of a pure tryptophan enantiomer separated per second), single-column ITP was found suitable only to the analysis of samples containing the enantiomers at close concentrations. A 94-mm separation path in ITP with the tandem-coupled separation channels made possible a complete resolution of a 1.5 nmol amount of the racemic mixture of the enantiomers. However, this led only to a moderate extension of the concentration range within which the enantiomers could be simultaneously quantified. The best results in this respect were achieved by using a concentration-cascade of the leading anions in the tandem-coupled separation channels. Here, a high production rate, favored in the first separation channel, was followed by the ITP migration of the enantiomers in the second channel under the electrolyte conditions enhancing their detectabilities. In dependence on the migration configuration of the enantiomers, this technique made possible their simultaneous determinations when their ratios in the loaded sample were 35:1 or less (D-tryptophan a major constituent) and 70:1 or less (L-tryptophan a major constituent).  相似文献   

9.
表面活性剂在高效毛细管电泳中的作用   总被引:3,自引:0,他引:3  
关福玉 《色谱》1995,13(1):30-32
表面活性剂作为缓冲液添加剂已广泛用于高效毛细管电泳中,综述了阴离子、阳离子、两性离子、非离子及手性等多种表面活性剂在离子、中性分子、手性化合物、多肽和蛋白质分离等方面的作用,介绍了其作用机理与改善高效毛细管电泳分离的原理。  相似文献   

10.
A chiral capillary monolithic column for enantiomer separation in capillary electrochromatography was prepared by coating cellulose tris(3,5‐dimethylphenylcarbamate) on porous glycidyl methacrylate‐co‐ethylene dimethacrylate monolith in capillary format grafted with chains of [2(methacryloyloxy)ethyl] trimethylammonium chloride. The surface modification of the monolith by the photografting of [2(methacryloyloxy)ethyl] trimethylammonium chloride monomer as well as the coating conditions of cellulose tris(3,5‐dimethylphenylcarbamate) onto the grafted monolithic scaffold were optimized to obtain a stable and reproducible chiral stationary phase for capillary electrochromatography. The effect of organic modifier (acetonitrile) in aqueous mobile phase for the enantiomer separation by capillary electrochromatography was also investigated. Several pairs of enantiomers including acidic, neutral, and basic analytes were tested and most of them were partially or completely resolved under aqueous mobile phases. The prepared monolithic chiral stationary phases exhibited a good stability, repeatability, and column‐to‐column reproducibility, with relative standard deviations below 11% in the studied electrochromatographic parameters.  相似文献   

11.
An analytical method, based on a column coupling capillary ITP and CZE in a hydrodynamically closed separation mode hyphenated with the detection in the modular arrangement, was developed in this work. Analytical possibilities of this approach are demonstrated on the direct and ultrasensitive quantitative determination of quinine (QUI) in diluted real multicomponent ionic matrices (beverages, urine). The detection cell interface, with the rectangular arrangement of the optical channels inside, connected the separation capillary with the LIF detector via optical fibers in the on‐column detection arrangement. ITP enabled the direct large volume (30 μL) injections of the diluted real matrices with an on‐line sample pretreatment (preseparation, preconcentration) so that no external sample preparation (except for the dilution) was necessary for the separation of the analyte in the multicomponent ionic matrices. Due to the ITP sample preconcentration and intrinsic sensitivity of the LIF detection, very low concentration LOD (as low as 77 pg/mL), were reached at the same time. This was ca. two orders lower than the corresponding LOD achieved by the same 2D separation system with UV absorbance detection. Compared to the single column CE‐LIF methods applied for this model analyte and matrix, this method was found to be superior in terms of concentration LOD, with acceptable selectivity and benefits of the on‐line sample preparation. A food control and bioanalytical application clearly illustrates great practical possibilities and routine use of the proposed modular ITP–CZE–LIF technique.  相似文献   

12.
The present work illustrated possibilities of column coupling electrophoresis combined with ionizable chiral selector and diode array detection (DAD) for the enantioselective analysis of trace drugs (pheniramine and its analogs) in pharmaceutical and clinical samples. Isotachophoresis (ITP), on-line coupled with capillary zone electrophoresis (CZE), served as an ideal injection technique (high sample load capacity, narrow and sharp drugs zones) of on-line pretreated samples (preseparation, purification and preconcentration of drugs) for the CZE stage. Enhanced (enantio)separation selectivity of CZE with ionizable chiral selector (carboxyethyl-beta-cyclodextrin recognized between drugs enantiomers on one hand as well as between drugs and sample matrix constituents on the other hand) enabled to obtain pure zones of the drugs enantiomers, suitable for their detection and quantitation. DAD in comparison with single wavelength UV detection enhanced value of analytical information verifying purity of drugs enantiomers zones (indicating interferents with different spectra to those of drugs). Obtained results indicated pure zones of interest confirming effective ITP-CZE (enantio)separation process. Distinguishing the trace analytes signals superposed on the baseline noise was provided with sufficient reliability (for this purpose the background correction and smoothing procedure had to be applied to the raw DAD spectra). The proposed ITP-CZE-DAD methods were characterized by favorable performance parameters (sensitivity, linearity, precision, recovery, accuracy, robustness, selectivity) and successfully applied for (i) enantiomeric purity testing of dexbrompheniramine in commercial pharmaceutical tablets and (ii) enantioselective metabolic study of pheniramine in human urine.  相似文献   

13.
In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl ‐phenylalanine; dl ‐tryptophan) using β‐Cyclodextrin and chiral ionic liquid ([TBA] [l ‐ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β‐CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β‐CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA‐I, 18AA‐II and 3AA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
TANAKA Yoshihide 《色谱》2002,20(4):317-327
 Capillary electrophoresis (CE) has become a powerful tool for enantiomer separations during the last decade. Since 1993, the author has investigated enantiomer separations by affinity capillary electrophoresis (affinity CE) with some proteins and by cyclodextrin electrokinetic chromatography (CDEKC) with some charged cyclodextrins (CDs). Many successful enantiomer separations are demonstrated from our study in this review article. In the enantiomer separations by affinity CE, the deterioration of detection  相似文献   

15.
《Analytical letters》2012,45(2):335-347
Abstract

Capillary zone electrophoresis resolutions of 2,4‐dinitrophenyl labeled amino acids (DNP‐AAs) enantiomers using three N‐methylated amino‐β‐cyclodextrins (CDs) [6I‐deoxy‐6I‐monomethylamino‐β‐CD (M‐A‐βCD), 6I‐deoxy‐6I‐dimethylamino‐β‐CD (diM‐A‐βCD), 6I‐deoxy‐6I‐trimethylammonium‐β‐cyclodextrin (triM‐A‐βCD)] as chiral selectors were investigated. These cationogenic selectors, differing in ionization and steric properties, exhibited clear differences in their enantioselectivities.

The differences in enantioresolution observed under identical acid‐base conditions (pH 5.2), providing comparable effective charges/mobilities of the CDs, e.g., excellent separations of single enantiomeric couples (triM‐A‐βCD, M‐A‐βCD), multicomponent mixtures of enantiomers (M‐A‐βCD), and mixtures of positional isomers (M‐A‐βCD, diM‐A‐βCD), indicated the importance of structural parameters (different degrees of methylation) of the studied chiral selectors in the separation mechanism.

The differences in enantioresolution observed under various acid base conditions (pH 5.2 and 9.6), providing significant differences of effective charges/mobilities of CDs, e.g., a dramatic decrease in enantioresolution as well as achiral resolution with uncharged M‐A‐βCD and preserved resolution with permanently charged triM‐A‐βCD, indicated the importance of charge of the studied chiral selectors in the separation mechanism.

The present study clearly showed that the studied CD derivatives have great potential as chiral selectors in capillary zone electrophoresis separations of DNP‐AAs and that their effective use is related to the character of the analyte (structure, hydrophobicity) as well as to working conditions (pH).  相似文献   

16.
A new type of polymethacrylate‐based monolithic column with chiral stationary phase was prepared for the enantioseparation of aromatic amino acids, namely d ,l ‐phenylalanine, d ,l ‐tyrosine, and d ,l ‐tryptophan by CEC. The monolithic column was prepared by in situ polymerization of butyl methacrylate (BMA), N‐methacryloyl‐l ‐histidine methyl ester (MAH), and ethylene dimethacrylate (EDMA) in the presence of porogens. The porogen mixture included DMF and phosphate buffer. MAH was used as a chiral selector. FTIR spectrum of the polymethacrylate‐based monolith showed that MAH was incorporated into the polymeric structure via in situ polymerization. Some experimental parameters including pH, concentration of the mobile phase, and MAH concentration with regard to the chiral CEC separation were investigated. Single enantiomers and enantiomer mixtures of the amino acids were separately injected into the monolithic column. It was observed that l ‐enantiomers of aromatic amino acids migrated before d ‐enantiomers. The reversal enantiomer migration order for tryptophan was observed upon changing of pH. Using the chiral monolithic column (100 μm id and 375 μm od), the best chiral separation was performed in 35:65% ACN/phosphate buffer (pH 8.0, 10 mM) with an applied voltage of 12 kV in CEC. SEM images showed that the chiral monolithic column has a continuous polymeric skeleton and large through‐pore structure.  相似文献   

17.
In the current work, two eco‐friendly analytical methods based on capillary electrophoresis (CE) and reversed phase liquid chromatography (RPLC) were developed for simultaneous determination of the most commonly used anticancer drugs for Hodgkin's disease: methotrexate (MTX), vinblastine, chlorambucil and dacarbazine. A background electrolyte (BGE) of 12.5 mmol/L phosphate buffer at pH 7.4 and 0.1 µmol/L 1‐butyl‐3‐methyl imidazolium bromide (BMImBr) ionic liquid (IL) was used for CE measurements at 250 nm detection wavelength, 20 kV applied voltage and 25 °C. The rinsing protocol was significantly improved to reduce the adsorption of IL on the interior surface of capillary. Moreover, RPLC method was developed on α‐1‐acid glycoprotein (AGP) column. Mobile phase was 10 mmol/L phosphate buffer at pH 6.0 (100% v/v) and flow rate at 0.1 mL/min. As AGP is a chiral column, it was successfully separated l ‐MTX from its enantiomer impurity d ‐MTX. Good linearity of quantitative analysis was achieved with coefficients of determinations (r2) >0.995. The stability of drugs measurements was investigated with adequate recoveries up to 24 h storage time under ambient temperature. The limits of detection were <50 and 90 ng/mL by CE and RPLC, respectively. The using of short‐chain IL as an additive in BGE achieved 600‐fold sensitivity enhancement compared with conventional Capillary Zone Electrophoresis (CZE). Therefore, for the first time, the proposed methods were successfully applied to determine simultaneously the analytes in human plasma and urine samples at clinically relevant concentrations with fast and simple pretreatments. Developed IL‐assisted CE and RPLC methods were also applied to measure MTX levels in patients’ samples over time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
An enantioselective assay for the determination of methadone and its main metabolite 2‐ethylidene‐1,5‐dimethyl‐3,3‐diphenylpyrrolidine in equine plasma based on capillary electrophoresis with highly sulfated γ‐cyclodextrin as chiral selector and electrokinetic analyte injection is described. The assay is based on liquid/liquid extraction of the analytes at alkaline pH from 0.1 mL plasma followed by electrokinetic sample injection of the analytes from the extract across a buffer plug without chiral selector. Separation occurs cationically at normal polarity in a pH 3 phosphate buffer containing 0.16% (w/v) of highly sulfated γ‐cyclodextrin. The developed assay is precise (intra‐ and interday RSD < 4% and < 7%, respectively), is capable to determine enantiomer levels of methadone and 2‐ethylidene‐1,5‐dimethyl‐3,3‐diphenylpyrrolidine in plasma down to 2.5 ng/mL, and was successfully applied to monitor enantiomer drug and metabolite levels in plasma of a pony that was anesthetized with racemic ketamine and isoflurane and received a bolus of racemic methadone and a bolus followed by constant rate infusion of racemic methadone. The data suggest that the assay is well suited for pharmacokinetic purposes.  相似文献   

19.
《Electrophoresis》2018,39(16):2069-2082
High‐resolution capillary zone electrophoresis – mass spectrometry (CZE‐MS) has been of increasing interest for the analysis of biopharmaceuticals. In this work, a combination of middle‐down and intact CZE‐MS analyses has been implemented for the characterization of a biotherapeutic monoclonal antibody (mAb) with a variety of post‐translational modifications (PTMs) and glycosylation structures. Middle‐down and intact CZE separations were performed in an acidified methanol‐water background electrolyte on a capillary with a positively charged coating (M7C4I) coupled to an Orbitrap mass spectrometer using a commercial sheathless interface (CESI). Middle‐down analysis of the IdeS‐digested mAb provided characterization of PTMs of digestion fragments. High resolution CZE enabled separation of charge variants corresponding to 2X‐deamidated, 1X‐deamidated, and non‐deamidated forms at baseline resolution. In the course of the middle‐down CZE‐MS analysis, separation of glycoforms of the FC/2 fragment was accomplished due to hydrodynamic volume differences. Several identified PTMs were confirmed by CZE‐MS2. Incorporation of TCEP‐HCl reducing agent in the sample solvent resulted in successful analysis of reduced forms without the need for alkylation. CZE‐MS studies on the intact mAb under denaturing conditions enabled baseline separation of the 2X‐glycosylated, 1X‐glycosylated, and aglycosylated populations as a result of hydrodynamic volume differences. The presence of a trace quantity of dissociated light chain was also detected in the intact protein analysis. Characterization of the mAb under native conditions verified identifications achieved via intact analysis and allowed for quantitative confirmation of proteoforms. Analysis of mAbs using CZE‐MS represents a complementary approach to the more conventional liquid‐chromatography – mass spectrometry‐based approaches.  相似文献   

20.
The use of capillary zone electrophoresis (CZE) on-line coupled with isotachophoresis (ITP) sample pretreatment (ITP-CZE) on a poly(methylmethacrylate) chip, provided with two separation channels in the column-coupling (CC) arrangement and on-column conductivity detection sensors, to the determination of bromate in drinking water was investigated. Hydrodynamic and electroosmotic flows of the solution in the separation compartment of the chip were suppressed and electrophoresis was a dominant transport process in the ITP-CZE separations. A high sample load capacity, linked with the use of ITP in this combination, made possible loading of the samples by a 9.2 microL sample injection channel of the chip. In addition, bromate was concentrated by a factor of 10(3) or more in the ITP stage of the separation and, therefore, its transfer to the CZE stage characterized negligible injection dispersion. This, along with a favorable electric conductivity of the carrier electrolyte solution, contributed to a 20 nmol/L (2.5 ppb) limit of detection for bromate in the CZE stage. Sample cleanup, integrated into the ITP stage, effectively complemented such a detection sensitivity and bromate could be quantified in drinking water matrices when its concentration was 80 nmol/L (10 ppb) or slightly less while the concentrations of anionic macroconstituent (chloride, sulfate, nitrate) in the loaded sample corresponding to a 2 mmol/L (70 ppm) concentration of chloride were still tolerable. The samples containing macroconstituents at higher concentrations required appropriate dilutions and, consequently, bromate in these samples could be directly determined only at proportionally higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号