首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nanoliquid chromatographic method for the stereoisomer separation of some flavanone aglycones and 7‐O‐glycosides has been proposed employing a C18 capillary column and a chiral mobile‐phase additive such as cyclodextrin. The chiral separation of eriodictyol, naringenin, and hesperitin was obtained by addition of carboxymethyl‐β‐cyclodextrin to the mobile phase, whereas eriocitrin, naringin, narirutin, and hesperidin diastereoisomers were resolved by using sulfobutyl ether‐β‐cyclodextrin. The influence of the composition of the mobile phase, the length of the capillary column, and the flow rate on the chiral recognition were investigated. At optimum conditions, baseline separation for the selected aglycones and glycosylated forms were achieved with a mobile phase consisting of 50 mM sodium acetate buffer pH 3 and 30% methanol containing 20 mM of carboxymethyl‐β‐cyclodextrin and 10 mM of sulfobutyl ether‐β‐cyclodextrin, respectively. Precision, linearity, and sensitivity of the method were tested. Limits of detection and quantification for the studied flavanone glycosides were in the range 1.3‐2.5 and 7.5‐12.5 µg/mL, respectively. The method was used for the determination of the diastereomeric composition of the flavanone‐7‐O‐glycosides in Citrus juices after solid‐phase extraction procedure.  相似文献   

2.
Photoirradiation surface molecularly imprinted polymers for the separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin were synthesized using functionalized silica as a matrix, 4‐(phenyldiazenyl)phenol as a light‐sensitive monomer, and 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin as a template. Fourier transform infrared spectroscopy results indicated that 4‐(phenyldiazenyl)phenol was grafted onto the surface of functionalized silica. The obtained imprinted polymers exhibited specific recognition toward 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin. Equilibrium binding experiments showed that the photoirradiation surface molecularly imprinted polymers obtained the maximum adsorption amount of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin at 20.5 mg/g. In binding kinetic experiments, the adsorption reached saturation within 2 h with binding capacity of 72.8%. The experimental results showed that the adsorption capacity and selectivity of imprinted polymers were effective for the separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin, indicating that imprinted polymers could be used to isolate 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin from a conversion mixture containing β‐cyclodextrin and maltose. The results showed that the imprinted polymers prepared by this method were very promising for the selective separation of 6‐O‐α‐d ‐maltosyl‐β‐cyclodextrin.  相似文献   

3.
A number of naphthalene donor compounds that possess an adamantanamine binding moiety and an (OCH2CH2)n (nn1, 2, 3, 4, 6, 8) spacer were synthesized. The fluorescence quenching between these donor substrates and mono-6-O-p-nitrobenzoyl-β-cyclodextrin (pNBCD) and mono-6-O-m-nitrobenzoyl-β-cyclodextrin(mNBCD) was studied in detail. It was found that very efficient fluorescence quenching could occur in these supramolecular systems. This quenching was attributed to the photoinduced electron transfer inside the supramolecular assembly between the naphthalene donors and cyclodextrin acceptors. Detailed Stern-Volmer constants were measured and they were partitioned into dynamic Stern-Volmer quenching constants and static binding constants. It was demonstrated that the binding constants between all the naphthalene compounds and cyclodextrins are the same as they possess the same binding site, i.e., adamantanamine.  相似文献   

4.
The intramolecular oxidation of ROCH3 to ROCH2OH, where the latter compound spontaneously decomposed to ROH and HCHO, was observed during the reaction of the supramolecular complex (met‐hemoCD3) with cumene hydroperoxide in aqueous solution. Met‐hemoCD3 is composed of meso‐tetrakis(4‐sulfonatophenyl)porphinatoiron(III) (FeIIITPPS) and a per‐O‐methylated β‐cyclodextrin dimer having an ‐OCH2PyCH2O‐ linker (Py=pyridine‐3,5‐diyl). The O=FeIVTPPS complex was formed by the reaction of met‐hemoCD3 with cumene hydroperoxide, and isolated by gel‐filtration chromatography. Although the isolated O=FeIVTPPS complex in the cyclodextrin cage was stable in aqueous solution at 25 °C, it was gradually converted to FeIITPPS (t1/2=7.6 h). This conversion was accompanied by oxidative O‐demethylation of an OCH3 group in the cyclodextrin dimer. The results indicated that hydrogen abstraction by O=FeIVTPPS from ROCH3 yields HO‐FeIIITPPS and ROCH2.. This was followed by radical coupling to afford FeIITPPS and ROCH2OH. The hemiacetal (ROCH2OH) immediately decomposed to ROH and HCHO. This study revealed the ability of oxoferryl porphyrin to induce two‐electron oxidation.  相似文献   

5.
The exhaustive primary‐side alkylation of cyclodextrins has never been achieved directly. The undesired and simultaneous derivatization of the secondary hydroxyl moieties generates intricate isomeric mixtures that are challenging to purify, analyse and characterize. The aim of this study was to develop a chromatography‐free and up‐scalable strategy towards the preparation of per‐6‐O‐methylated cyclodextrin and to test the compound as potential chiral selector. The target molecule was prepared according to a five‐step synthesis by using methyltriphenylphosphonium bromide as catalyst under heterogeneous conditions. The removal of benzyl moieties, used as temporary secondary‐side protecting groups, was attained by applying hydrazine‐carbonate in the presence of Pd/C. All the intermediates were obtained in high yields, thoroughly characterized and their purity was assessed by ad‐hoc developed HPLC methods. The per‐6‐O‐methylated β‐cyclodextrin showed promising chiral recognition ability as background electrolyte additive in cyclodextrin‐modified capillary electrophoresis using the recreational drug methylene‐dioxypyrovalerone as model compound. Additionally, a model for the inclusion geometry between the single isomer host and the selected drug was developed based on the extensive 2D NMR analysis. The versatility of the proposed synthetic strategy opens the way to the industrial production of homogeneously primary‐alkylated cyclodextrins and to their wide application in chiral separation of various drugs.  相似文献   

6.
A biphasic chiral recognition system based on chiral ligand exchange with Cu(II)‐Nn‐dodecyl‐L‐proline and hydroxypropyl‐β‐cyclodextrin as an additive was developed to enantioseparate aromatic β‐amino acids by high‐speed counter‐current chromatography. The biphasic chiral recognition system was established with an n‐butanol/water (1:1, v/v) solvent system by adding Nn‐dodecyl‐L‐proline and Cu(II) ions to the organic phase and hydroxypropyl‐β‐cyclodextrin to the aqueous phase. Several separation parameters, such as temperature, pH value, and chiral selector concentration, were systematically investigated by enantioselective liquid–liquid extraction. Under the optimal separation conditions, 54.5 mg of (R,S)‐β‐phenylalanine and 74.3 mg of (R,S)‐β‐3,4‐dimethoxyphenylalanine were baseline enantioseparated. More importantly, the synergistic enantiorecognition mechanism, based on the Cu(II)‐Nn‐dodecyl‐L‐proline and hydroxypropyl‐β‐cyclodextrin, was discussed for the first time.  相似文献   

7.
Three newly synthesized chiral selectors, namely, 2IO‐, 3IO‐, and 6IO‐carboxymethyl‐γ‐cyclodextrin, native γ‐cyclodextrin, and commercially available carboxymethylated γ‐cyclodextrin with degree of substitution of 3–6 were used as additives in a background electrolyte composed of phosphate buffer at 20 mmol/L concentration and pH 2.5. This system was used for the analysis of several biologically significant low‐molecular‐mass chiral compounds by capillary electrophoresis. The results confirmed that the position of carboxymethyl group influences the enantioseparation efficiency of all the studied analytes. The 2IO‐ and 3IO‐ regioisomers provide a significantly better resolution than native γ‐cyclodextrin, while the 6IO‐regioisomer gives only a slightly better enantioseparation than native γ‐cyclodextrin. The application of γ‐cyclodextrin possessing higher number of carboxymethyl groups led to the best resolution for the majority of the compounds analyzed.  相似文献   

8.
Recycling countercurrent chromatography was successfully applied to the resolution of 2‐(4‐bromomethylphenyl)propionic acid, a key synthetic intermediate for synthesis of nonsteroidal anti‐inflammatory drug loxoprofen, using hydroxypropyl‐β‐cyclodextrin as chiral selector. The two‐phase solvent system composed of n‐hexane/n‐butyl acetate/0.1 mol/L citrate buffer solution with pH 2.4 (8:2:10, v/v/v) was selected. Influence factors for the enantioseparation were optimized, including type of substituted β‐cyclodextrin, concentration of hydroxypropyl‐β‐cyclodextrin, separation temperature, and pH of aqueous phase. Under optimized separation conditions, 50 mg of 2‐(4‐bromomethylphenyl)propionic acid was enantioseparated using preparative recycling countercurrent chromatography. Technical details for recycling elution mode were discussed. The purities of both the S and R enantiomers were over 99.0% as determined by high‐performance liquid chromatography. The enantiomeric excess of the S and R enantiomers reached 98.0%. The recovery of the enantiomers from eluted fractions was 40.8–65.6%, yielding 16.4 mg of the S enantiomer and 10.2 mg of the R enantiomer. At the same time, we attempted to enantioseparate the anti‐inflammatory drug loxoprofen by countercurrent chromatography and high‐performance liquid chromatography using a chiral mobile phase additive. However, no successful enantioseparation was achieved so far.  相似文献   

9.
《Electrophoresis》2018,39(2):348-355
A new single‐urea‐bound chiral stationary phase based on 3,5‐dimethylphenylcarbamoylated β‐cyclodextrin was prepared through the Staudinger reaction of mono (6A‐azido‐6A‐deoxy)‐per(3,5‐dimethylphenylcarbamoylated) β‐cyclodextrin and 3‐aminopropyl silica gel under CO2 atmosphere. The new phase exhibited good enantioseparation performance for 33 analytes using normal‐phase HPLC conditions; 19 of them were baseline separated. Effects of structure of analytes, alcoholic modifiers, and acidic/basic additives on separation performances of this new cyclodextrin chiral stationary phase have been studied in detail. The results showed that the retention and resolution of acidic and basic analytes on the CSP were greatly affected by the additives. Peak symmetry for some analytes could be improved by simultaneously adding acidic and basic additives to the mobile phase. This work expands the potential applications of the cyclodextrin‐based chiral stationary phases in the normal‐phase HPLC.  相似文献   

10.
Regioselectively ethylated celluloses, 2‐O‐ ( 1 ), 3‐O‐ ( 2 ), and 6‐O‐ethyl‐ ( 3 ) celluloses were synthesized via ring‐opening polymerization of glucopyranose orthopivalate derivatives. The number‐average degrees of polymerization (DPns) of compounds 1 and 2 were calculated to be 10.6 and 49.4, respectively. Three kinds of compound 3 with different DPns were prepared: DPns = 12.9 ( 3‐1 ), 60.3 ( 3‐2 ), and 36.1 ( 3‐3 ). The 2‐O‐, 3‐O‐, and 6‐O‐ethylcelluloses were soluble in water, confirmed by NMR analysis. Furthermore, the 3‐O‐ ( 2 ), and 6‐O‐ethyl‐ ( 3‐2 ) celluloses showed thermo‐responsive aggregation behavior and had a lower critical solution temperature (LCST) at about 40 °C and 70 °C, respectively, based on the results from turbidity tests and DSC measurements. The 6‐O‐ethyl‐cellulose ( 3‐3 ) with DPn = 36.1 and DPw = 54.6 showed gelation behavior over approx 70 °C, whereas the 6‐O‐ethyl‐celluloses 3‐1 and 3‐2 with lower and higher molecular weight, such as DPns 12.9 and 60.3, did not show gelation behavior at this temperature. It was revealed that the position of ethyl group affected the phase transition temperature. According to our experiments, the 3‐O‐ethyl and 6‐O‐ethyl groups along the cellulose chains caused the thermo‐responsive property of their aqueous solutions. The appropriate DP of the regioselective 6‐O‐ethyl‐cellulose existed for gelation of the aqueous solution.

  相似文献   


11.
Enantiomers of Tröger's base were separated by capillary electrophoresis using 2IO‐, 3IO‐, and 6IO‐carboxymethyl‐α‐, β‐, and γ‐cyclodextrin and native α‐, β‐, and γ‐cyclodextrin as chiral additives at 0–12 mmol/L for β‐cyclodextrin and its derivatives and 0–50 mmol/L for α‐ and γ‐cyclodextrins and their derivatives in a background electrolyte composed of sodium phosphate buffer at 20 mmol/L concentration and pH 2.5. Apparent stability constants of all cyclodextrin–Tröger's base complexes were calculated based on capillary electrophoresis data. The obtained results showed that the position of the carboxymethyl group as well as the cavity size of the individual cyclodextrin significantly influences the apparent stability constants of cyclodextrin–Tröger's base complexes.  相似文献   

12.
This work documents the influence of the position of single carboxymethyl group on the β‐cyclodextrin skeleton on the enantioselectivity. These synthesized monosubstituted carboxymethyl cyclodextrin (CD) derivatives, native β‐cyclodextrin, and commercially available carboxymethyl‐β‐cyclodextrin with degree of substitution approximately 3 were used as additives into the BGE consisting of phosphate buffer at 20 mmol/L concentration, pH 2.5, and several biologically significant low‐molecular‐mass chiral compounds were enantioseparated by CE. The results indicate that different substituent location on β‐cyclodextrin skeleton has a significant influence on the enantioseparation of the investigated enantiomers. The enantioselectivity of 2IO‐regioisomer was better than with native β‐cyclodextrin. Comparable results to native β‐cyclodextrin were obtained for 6IO‐ regioisomer and the enantioselectivity of 3IO‐regioisomer was even worse than with native β‐cyclodextrin. Commercially available derivative of CD provides better resolutions than the monosubstituted carboxymethyl CD derivatives for most of the investigated analytes.  相似文献   

13.
The protected apiose-containing disaccharide, benzyl O-(2,3, 3'-tri-O-acetyl-β-D-apiofuranosyl)-( 1→3)-2, 4-di-O-benzoyl-α-D-xylopyranoside, was synthesized and its X-ray structure provided.  相似文献   

14.
The present paper describes the synthesis of 2,6‐di‐O‐thexyldimethylsilyl cellulose as a novel 2,6‐di‐O‐protected cellulose derivative. This material was obtained by reacting cellulose in N,N‐dimethylacetamide/LiCl solution with thexyldimethylchlorosilane and imidazole for 24 h at 100°C. In a typical subsequent reaction the residual OH‐group in position 3 could be completely etherified without loss of any protecting groups. Treatment with tetrabutylammonium fluoride leads to the novel compounds 3‐O‐allyl and 3‐O‐methyl cellulose. The structures of all polymers are revealed by means of one‐ (1H and 13C) and two‐dimensional (COSY and HMQC) NMR techniques.  相似文献   

15.
In both the title structures, O‐ethyl N‐(2,3,4,6‐tetra‐O‐acetyl‐β‐d ‐gluco­pyran­osyl)­thio­carbam­ate, C17H25NO10S, and O‐methyl N‐(2,3,4,6‐tetra‐O‐acetyl‐β‐d ‐gluco­pyran­osyl)­thiocar­bam­ate, C16H23NO10S, the hexo­pyran­osyl ring adopts the 4C1 conformation. All the ring substituents are in equatorial positions. The acetoxy­methyl group is in a gauchegauche conformation. The S atom is in a synperi­planar conformation, while the C—N—C—O linkage is antiperiplanar. N—H?O intermolecular hydrogen bonds link the mol­ecules into infinite chains and these are connected by C—H?O interactions.  相似文献   

16.
The present form of barium acetate, formulated as [Ba(C2H3O2)2(H2O)3]n, is the largest reported hydrate of the salt and this leads to a distinct structural behaviour setting it apart from the rest of the family. The compound is a linear polymer with a nine‐coordinate Ba(Oaqua)3(Oacetate)6 monomer unit. The non‐H part of the structure is ordered according to C2/m symmetry, while the disordered water H atoms only abide by this symmetry in a statistical sense. Each molecule is halved by a mirror plane bisecting the Ba centre, one water molecule and one acetate ligand, while containing the other acetate ligand. The chains are interconnected by a disordered water–water/acetate O—H...O hydrogen‐bonding network involving all water H atoms. The structure and stability of this phase are compared with the other known acetates of barium which differ in the degree of hydration.  相似文献   

17.
用氢谱、红外光谱、X-射线粉末衍射、热分析、元素分析等测试方法研究了Veronicafolin (3,5,4′-三羟基-6,7,3′-三甲氧基黄酮) 和β-环糊精 (β-CD) 的固体包合物的谱学特征。元素分析结果显示形成Veronicafolin-β-CD·20H2O包合物,其中C:39.58%, H: 5.75%,表明包合物中主客体比为1∶1。该包合类型属于AL-型。通过紫外-可见分光光度法研究了在羟丙基-β-环糊精(HP-β-CD)的存在下Veronicafolin的相溶解度曲线,测得校正曲线为y = 24148x + 0.0075 (r=0.9999),相溶解曲线为y=0.4738x-2.0×10-7 (r=0.9490),包结平衡常数Ks为4.5×106mol-1。HP-β-CD提高了黄酮醇Veronicafolin的溶解度。  相似文献   

18.
A new three‐dimensional graphene oxide‐wrapped melamine foam was prepared and used as a solid‐phase extraction substrate. β‐Cyclodextrin was fabricated onto the surface of three‐dimensional graphene oxide‐wrapped melamine foam by a chemical covalent interaction. In view of a specific surface area and a large delocalized π electron system of graphene oxide, in combination with a hydrophobic interior cavity and a hydrophilic peripheral face of β‐cyclodextrin, the prepared extraction material was proposed for the determination of flavonoids. In order to demonstrate the extraction properties of the as‐prepared material, the adsorption energies were theoretically calculated based on periodic density functional theory. Static‐state and dynamic‐state binding experiments were also investigated, which revealed the monolayer coverage of flavonoids onto the β‐cyclodextrin/graphene oxide‐wrapped melamine foams through the chemical adsorption. 1H NMR spectroscopy indicated the formation of flavonoids–β‐cyclodextrin inclusion complexes. Under the optimum conditions, the proposed method exhibited acceptable linear ranges (2–200 μg/L for rutin and quercetin‐3‐O‐rhamnoside; 5–200 μg/L for quercetin) with correlation coefficients ranging from 0.9979 to 0.9994. The batch‐to‐batch reproducibility (= 5) was 3.5–6.8%. Finally, the as‐established method was satisfactorily applied for the determination of flavonoids in Lycium barbarum (Goji) samples with relative recoveries in the range of 77.9–102.6%.  相似文献   

19.
李红明  杨敏  赵刚  俞庆森  丁渝 《中国化学》2000,18(3):388-394
8,9-Dimethoxy-7-epi-goniopypyrone, an analog of ( )-go-niopypyrone, was synthesized from 3-O-benzyl-1, 2-O-iso-propylidene-5-C-phenyl-α-D-gluco-pentofuranose (3).  相似文献   

20.
The efficient synthesis of Oβ‐D ‐ribofuranosyl‐(1″→2′)‐guanosine‐5″‐O‐phosphate and Oβ‐D ‐ribofuranosyl‐(1″→2′)‐adenosine‐5″‐O‐phosphate, minor tRNA components, have been developed, and their conformational properties were examined by NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号