首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystalline vanadium pentoxide with hierarchical mesopores was synthesized by using a CTAB/BMIC cotemplate (CTAB=cetyltrimethylammonium bromide, BMIC=1‐butyl‐3‐methylimidazolium chloride). The material was fully characterized by SEM, TEM, N2 adsorption–desorption, XRD, XPS, and CV methods. By elaborate adjustment of the template proportions, the distribution and size of the hierarchical pores were tuned successfully. CTAB cationic surfactant contributed more to the larger mesopores, whereas BMIC ionic liquid was beneficial in forming the smaller nanopores. The vanadium‐containing anions combined with CTA+ micelles and BMI+ rings through electrostatic interactions. The CTA+–O(VO)O?–BMI+ entities built up an orderly array, which finally formed the hierarchical mesoporous framework during thermal treatment. The mesoporous vanadium pentoxide directed by the cotemplate of CTAB/BMIC=1:1 showed many orderly crystalline structures and demonstrated a large capacitance (225 F g?1); it is thus a promising material for electrochemical capacitors. Two alternative solutions to the disappearance of capacitance due to insertion of K+ are proposed in view of possible future applications.  相似文献   

2.
The alkylammonium cations were successively intercalated into the interlayer of muscovite. It was achieved by inorganic-organic ion exchange in the hydrothermal reaction of the LiNO3-treated muscovite with cetyltrimethylammonium bromide solution. One-dimensional Patterson plots and electron density calculations show that hydrated Li+ and CTA+ cations entered the interlayer of muscovite successively. The CTA+-intercalated muscovite was characterized by powder X-ray diffraction and elemental analysis, in conjunction with FTIR, nuclear magnetic resonance, X-ray photoelectron spectra, high-resolution transmission electron microscopy, etc. The experiments show that organo-muscovite composite with ordered structure has been obtained. The CTA+ headgroups are distributed in the interlayer uniformly. However, the arrangement and conformation of CTA+ chains are strongly dependent upon the reaction temperature. At lower reaction temperature, the chains of CTA+ ions adopt a little more disordered arrangement and have higher gauche/trans conformer ratio, resulting in the disturbance to the interlayer symmetry. Whereas at higher reaction temperature, the sample with paraffin-like arrangement of CTA+ chains could be obtained, in which the methylene chains of CTA+ adopt a fully stretched, all-trans conformation.  相似文献   

3.
Mesoporous aluminosilicate ropes with improved hydrothermal stability have been prepared through S+XI+ route via self-assembly of protozeolitic nanoclusters with cetyltrimethylammonium bromides (CTAB) template micelles in HNO3 solution. SEM observation confirmed that high-yield aluminosilicate ropes could be produced under proper HNO3 concentration. NO3 ions had strong binding strength to the CTA+ ions and tended to form more elongated surfactant micelles, thus fibrous products were fabricated under the direction of these long rod micelles in shearing flow. At the same time, the NO3 ions combining with CTA+ ions generated more active (CTA+NO3) assembly, which effectively catalysed the polymerization of protozeolitic nanoclusters with large volume into highly ordered mesostructures. Compared with normal MCM-41 silica synthesized through S+XI+ route in acidic media, the hydrothermal stability was improved considerably. These protozeolitic nanoclusters survived strongly acidic media and entered into mesostructured framework, which contributed to the improvement of hydrothermal stability.  相似文献   

4.
The effects of counterion specificity on the properties of sodium dodecyl sulfate micelles containing photochemically reactive solubilizates were studied by laser flash photolysis and light scattering, potentiometric, spectroscopic and microelectrophoretic measurements. The counterions investigated were an amphiphilic ion (cetyltrimethylammonium, CTA+) and two divalent ions (cupric, Cu2+, and methylviologen, MV2+). Cu2+ and MV2+ showed lower effect than CTA+ in promoting changes of micelle size and electrostatic potential at the micelle/solution interface. This can be attributed to the complex interplay between electrostatic and hydrophobic interactions, which determine the average location of counterions, i.e., prevailing interfacial or intercalated binding to the micelle. Laser flash photolysis showed that Cu2+ enhanced the rate of decay of biphenyl triplet, while MV2+ did not show any effect. The differences between the quenching cations were attributed to the average location of MV2+ ions in the Stern layer further away from the micelle core than Cu2+.  相似文献   

5.
The paper capillary permeation adsorption (PCPA) separation of 2,4‐D and silvex herbicides from water by the addition of cetyltrimethylammonium bromide (CTAB) was studied. The effect of pH, CTAB concentration, and the type of PCPA treatment on separatability has been investigated. A nearly 100% separatability was obtained for each of 2,4‐D and silvex at pH values larger than 7 and 5, respectively. The separatability is greater than that without an addition of CTAB. It was confirmed that 2,4‐D and silvex are adsorbed as molecules on the fiber surface that contains ion pairs CTA+COO? formed by the combination of CTA+ cations with the carboxyl groups bonded in the fiber surface.  相似文献   

6.
The rates of reaction between metal-dipeptide complex ([Zn(II)-Gly-Phe]+) and ninhydrin have been determined in aqueous and aqueous–cationic micelles of cetyltrimethylammonium bromide (CTAB) at 70°C and pH 5.0. The rate data indicate that the reaction follows the template reaction mechanism in both the media. The reaction followed a first-order and fractional-order kinetics with respect to [Zn(II)-Gly-Phe]+ and [ninhydrin], respectively, in the excess of ninhydrin over [Zn(II)-Gly-Phe]+. The rate constant is affected by [CTAB] changes and maximum rate enhancement is approximately three-fold. CTAB micelles decrease the activation enthalpy and make the activation entropy less negative. Quantitative kinetic analysis of rate constant (k ψ)–[CTAB] data was performed on the basis of pseudophase model of the micelles (proposed by Menger and Portnoy and developed by Bunton). The values of binding constants K S for [Zn(II)-Gly-Phe]+ and K N for ninhydrin with micelles are calculated with the help of observed kinetic data. The results obtained in micellar medium are treated quantitatively on the basis of pseudophase model.  相似文献   

7.
The presence of carcinogenic bromate (BrO3) in drinking water became a global concern and efforts towards its removal mainly focused on addressing the source. Herein, we rationally designed a porphyrin-based covalent organic framework (PV-COF) with a cationic surface to provide electrostatic interactions and a porphyrin core to induce hydrogen bonding interactions for the efficient removal of BrO3 from water. Through H-bonding and electrostatic interactions, PV-COF exhibited an exceptional bromate removal efficiency (maximum adsorption capacity, Qmax: 203.8 mg g−1) with the fastest uptake rate (kads) of 191.45 g mg−1 min−1. The bromate concentration was reduced to far below the allowed concentration in drinking water (10 ppb) within 20 minutes. We studied the relationship between bromate adsorption and COF surface modification by metalation of the porphyrinic core or neutralization of the viologen linkers by chemical reduction. The bromate adsorption mechanism was studied by EDAX mapping and molecular simulations, and it was found that ion exchange and hydrogen bonding formation drive the adsorption. Importantly, PV-COF could be easily recycled several times without compromising its adsorption efficiency.

A cationic COF removes carcinogenic bromate with a remarkable rate constant of 191.45 g mg−1 min−1.  相似文献   

8.
Aprotic Li-CO2 batteries have attracted growing interest due to their high theoretical energy density and its ability to use green house gas CO2 for energy storage.However,the poor ability of activating CO2 in organic electrolyte often leads to the premature termination of CO2 reduction reaction (CO2RR) directly.Here in this work,cetyl trimethyl ammonium bromide (CTAB) was introduced into a dimethyl sulfoxide(DMSO) based Li-CO2 ba...  相似文献   

9.
Surfactant aggregates have long been considered as a tool to improve drug delivery and have been widely used in medical products. The pH-responsive aggregation behavior in anionic gemini surfactant 1,3-bis(N-dodecyl-N-propanesulfonate sodium)-propane (C12C3C12(SO3)2) and its mixture with a cationic monomeric surfactant cetyltrimethylammonium bromide (CTAB) have been investigated. The spherical-to-wormlike micelle transition was successfully realized in C12C3C12(SO3)2 through decreasing the pH, while the rheological properties were perfectly enhanced for the formation of wormlike micelles. Especially at 140 mM and pH 6.7, the mixture showed high viscoelasticity, and the maximum of the zero-shear viscosity reached 1530 Pa·s. Acting as a sulfobetaine zwitterionic gemini surfactant, the electrostatic attraction, the hydrogen bond and the short spacer of C12C3C12(SO3)2 molecules were all responsible for the significant micellar growth. Upon adding CTAB, the similar transition could also be realized at a low pH, and the further transformation to branched micelles occurred by adjusting the total concentration. Although the mixtures did not approach the viscosity maximum appearing in the C12C3C12(SO3)2 solution, CTAB addition is more favorable for viscosity enhancement in the wormlike-micelle region. The weakened charges of the headgroups in a catanionic mixed system minimizes the micellar spontaneous curvature and enhances the intermolecular hydrogen-bonding interaction between C12C3C12(SO3)2, facilitating the formation of a viscous solution, which would greatly induce entanglement and even the fusion of wormlike micelles, thus resulting in branched microstructures and a decline of viscosity.  相似文献   

10.
Hongzhen Lian  Yuna Wei 《Talanta》2007,71(1):264-269
The chromatographic fingerprints of industrial o-toluic acid, m-toluic acid and p-toluic acid have been established by HPLC-UV detection according to their impurity groups. HPLC separation of all relative substances involved in the groups was developed on a Kromasil C18 column by using methanol-water-NH4Ac-HAc buffer (100 mM, pH 4.70) 15/65/20 (v/v/v) as the mobile phase at a flow rate of 1.5 mL/min, and detection was operated by UV adsorption at a wavelength of 254 nm. The ultraviolet spectra corresponding to each chromatographic peak were also recorded for further identification of all components. Whether the limits of relative impurities residues in a toluic acid product are qualified or not can be intuitively estimated by analyzing its chromatogram with comparison to the fingerprint. This protocol has successfully provided some Chinese manufacturers with a simple and feasible method for quality control of toluic acids for industrial use.  相似文献   

11.
The spectroscopic and photophysical properties of N-nonyl acridine orange – a metachromatic dye useful as a mitochondrial probe in living cells – are reported in water and microheterogeneous media: anionic sodium dodecylsulfate (SDS), cationic cetyltrimethylammonium bromide (CTAB) and neutral octylophenylpolyoxyethylene ether (TX-100). The spectral changes of N-nonyl acridine orange were observed in the presence of varying amount of SDS, CTAB and TX-100 and indicated formation of a dye–surfactant complex. The spectral changes were also regarded to be caused by the incorporation of dye molecules to micelles. It was proved by calculated values Kb and f in the following order: Kb TX-100 > Kb CTAB > Kb SDS and fTX-100 > fCTAB > fSDS. NAO binds to the micelle regardless the micellar charge. There are two types of interactions between NAO and micelles: hydrophobic and electrostatic. The hydrophobic interactions play a dominant role in binding of the dye to neutral TX-100. The unexpected fact of the binding NAO to cationic CTAB can be explained by a dominant role of hydrophobic interactions over electrostatic repulsion. Therefore, the affinity of NAO to CTAB is smaller than TX-100. Electrostatic interactions play an important role in binding of NAO to anionic micelles SDS. We observed a prolonged fluorescence lifetime after formation of the dye–surfactant complex τSDS > τTX-100 > τCTAB > τwater, the dye being protected against water in this environment. TX-100 is found to stabilize the excited state of NAO which is more polar than the ground state. Spectroscopic and photophysical properties of NAO will be helpful for a better understanding of the nature of binding and distribution inside mammalian cells.  相似文献   

12.
The system of alcohol (C8OH) and hexadecyl trimethyl ammonium bromide (CTAB) was studied by molecular dynamics simulation, and the cylindrical (or rod-like) micelles with different endcaps were obtained. The simulation results presented the different terminal structures of the cylindrical (rod-like) micelles. According to the critical packing parameters of the micellar stability theory, the microscopic structures of cylindrical (or rod-like) micelles with different endcaps were analyzed. The shorter rod-like micelle was constituted by the cylindrical body and two swelling spherical endcaps, while the longer cylindrical (or rod-like) micelle had two spherical crown endcaps less than the hemisphere. The models of the cylindrical (rod-like) micelles were presented in detail based on the simulation results and the micellar stability theory.  相似文献   

13.
The adsorption isotherms of cetyltrimethylammonium ion (CTA+) together with that of the Br counterion on silica gel, and the effects of pH and added salts (NaF, NaCl and NaBr) have been systematically determined at 25°C. Electrophoretic mobilities of the silica gel particles have also been measured in the same conditions. The adsorption isotherm of CTA+ consists of four regions. Region I, at low concentrations of surfactant, the adsorption results primarily from electrostatic force between CTA+ and the negatively charged silica surface. Region II (first plateau), at medium concentrations, the adsorption is due to both the electrostatic force and the specific attraction (vdW forces) between CTA+ and the surface. Region III, characterized by an abrupt increase in the slope of the isotherm when the concentration reaches a particular point known as hemimicelle concentration (HMC). The abrupt increase in the adsorption is due to the hydrophobic interaction between hydrocarbon chains. Region IV (second plateau), at or above CMC, the limiting adsorption is reached as the micelle is not adsorbed. Based on this model, the experimental results can be explained reasonably. The results show that the HMC is about half of the CMC. According to the assumption that each adsorbed CTA+ ion in the first plateau is an active center for surface aggregation, the average aggregation number of hemimicelle have been calculated.  相似文献   

14.
A new dual soft‐template system comprising the asymmetric triblock copolymer poly(styrene‐b‐2‐vinyl pyridine‐b‐ethylene oxide) (PS‐b‐P2VP‐b‐PEO) and the cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to synthesize hollow mesoporous silica (HMS) nanoparticles with a center void of around 17 nm. The stable PS‐b‐P2VP‐b‐PEO polymeric micelle serves as a template to form the hollow interior, while the CTAB surfactant serves as a template to form mesopores in the shells. The P2VP blocks on the polymeric micelles can interact with positively charged CTA+ ions via negatively charged hydrolyzed silica species. Thus, dual soft‐templates clearly have different roles for the preparation of the HMS nanoparticles. Interestingly, the thicknesses of the mesoporous shell are tunable by varying the amounts of TEOS and CTAB. This study provides new insight on the preparation of mesoporous materials based on colloidal chemistry.  相似文献   

15.
The absorption spectra of the three isomeric phenyl-pyridyl-ketones were studied in anionic (SLS), cationic (CTAB) and non-ionic (Triton X-100) micellar solutions. The spectral changes of the n, π* transition in micelles compared to net water provided information on the location of the ketone molecules in the micelle and the partitioning of ketones between micelles and water. The apparent pKa values of the three pyridyl ketones were determined in anionic, cationic and non-ionic micelles and compared to those in aqueous solution. The results indicate that the ketones reside within the interfacial head group region of the micelle. This location affects the protolytic equilibria: a decrease in nitrogen basicity in Triton X-100 (ΔKa∼−0.6) and CTAB (ΔpKa−0.5) and an increase in SLS (ΔpKa+1.5) are attributed to a reduced polarity at the micelle surface and to an electrostatic surface potential.  相似文献   

16.
In a titration calorimetric study an aqueous solution held in a syringe and containing hexadecyltrimethylammonium bromide (CTAB; 15.4×10–3 mol dm–3) is injected in aliquots (5×l0–3 dm3) into a sample cell containing initially water. Analysis of the data shows that thecmc equals 0.97×l0–3 dm–3 and the enthalpy of micelle formation equals –10.3 kJ mol–1. When the solution in the syringe is replaced by a mixed surfactant solution, CTAB+dodecyltrimethylammonium bromide, at the same total concentration of surfactant, thecmc of CTAB decreases gradually with increasing mole fraction of DOTAB but the enthalpy of CTAB micelle formation is hardly affected. We conclude, therefore, that incorporation of DOTAB monomers into the CTAB micelles stabilizes entropically the CTAB micelles.We thank EPSRC for their support; the Commonwealth Scholarship Commission for an award to MCSS and the Royal Society for a grant awarded to PMC for the purchase of the Titration Microcalorimeter.  相似文献   

17.
张旭锋  吴文辉 《化学学报》2009,67(20):2381-2384
将阴离子疏水缔合丙烯酰胺共聚物P(NaAMC14S-b-AM)与阳离子蠕虫状胶束十六烷基三甲基溴化铵/水杨酸钠(CTAB/NaSal)在水溶液中自组装制备了新型的缔合增粘体. 由稳态剪切和动态流变实验结果得出: 自组装体系在80 ℃下仍具有显著的协同增粘效应, 其流变行为符合Maxwell模型. 同蠕虫状胶束相比, 自组装体系的稳态模量G0、力学松弛时间τR和缠结点密度ν都有增加, 由此分析缔合体系中两组分间形成了相互缠结的网络结构, 在链缠结处共聚物主链上的疏水侧链嵌入到了蠕虫状胶束的内核.  相似文献   

18.
This work describes the chemical synthesis of nickel hydroxide in the presence of cationic and anionic surfactants (dodecyl benzene sulfonate, DBS?, and cetyltrimethylammonium, CTA+). The materials were characterized by X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis. Our findings highlighted that the synthesis in the presence of anionic DBS?, the α-Ni(OH)2 structure was preferentially formed. This material showed a high structural disorder and a high amount of intercalated species, suggesting the presence of both micelles and individual surfactants. On the other hand, the synthesis performed in the presence of CTA+ has not showed any drastic change in the material structure compared with pure Ni(OH)2; nevertheless, the intercalated cationic surfactant was identified by FTIR measurements. The enhanced electrochemical response found for the Ni(OH)2/DBS? over the Ni(OH)2/CTA+ modified electrodes can be attributed to the enhancement of the ionic diffusion through the solid material as an effect of the high structural disorder and the presence of the excess of the negative electric charge in the Ni(OH)2 sheets.  相似文献   

19.
The effect of micelles of different surfactants (cationic, anionic, and neutral) on the kinetics of the glucose oxidase-catalyzed reduction of ferrocenium cations RFc+ (R=H, Bun) byd-glucose was studied by spectrophotometry. In micellar media of Triton X-100 and sodium dodecyl sulfate (SDS), the Michaelis dependence of the reaction rate on the HFc+ concentration is observed, while this dependence has an extreme character in cationic micelles of cetyltrimethylammonium bromide (CTAB). The nature and concentration of surfactants of all types have a slight effect on the rate of reduction of HFc+. The level of enzymatic activity is approximately equal in the case of Triton X-100 and CTAB and is considerably lower in the SDS micelles. On going from HFc+ to BunFc+, the reaction rate is maximum in the cationic CTAB micelles, the anionic SDS micelles exhibit almost no activity, and the activity has an intermediate value in neutral micelles of Triton X-100. The conditions are presented under which the micellar medium controls the catalytic activity of glucose oxidase with respect to ferrocenium cations. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1795–1801, October, 1997.  相似文献   

20.
Summary Oxidation of the FeII chelates [FeL] (L = phen or bipy) by CrVI and MnVII in H2SO4 medium was found to proceed through the formation of a bimetallic insertion complex which decomposes in the slow step, followed by electron transfer from [FeL] to the oxidant. The reactions are catalysed by both anionic and non-ionic micelles [SDS and triton-x (Tx), respectively]. A mechanism is suggested involving electrostatic stabilization of the cationic forms of the FeII chelates by anionic SDS and the partial anionic character of polyoxyethylene moiety of Tx, respectively. The marginal catalysis of cationic micelles (CTAB) is attributed to co-anion-micellar interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号