首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diels‐Alder reaction of 2‐(E‐2‐nitroethenyl)‐1H‐pyrrole ( 2a ) with 1,4‐benzoquinone gave the desired benzo[e]indole‐6, 9(3H)‐dione ( 4a ) in 10% yield versus a 26% yield (lit. 86% [5]) of the known N‐methyl compound ( 4b ) from the N‐(or 1)‐methyl compound ( 2b ). Protection of the nitrogen of 2a with a phenylsul‐fonyl group ( 2c ) gave a 9% yield of the corresponding N‐(or 3)‐phenylsulfonyl compound ( 4c ). The reaction of 2b with 1,4‐naphthoquinone gave in 6% yield (lit. 64% [5]) the known 3‐methylnaphtho[2,3‐e]‐indole‐6, 9(3H)‐dione ( 6 ). The reaction of 2‐(E‐2‐nitroethenyl)furan ( 8a ) gave a small yield of the desired naphtho[2,1‐b]furan‐6, 9‐dione ( 9a ), recognized by comparing its NMR spectrum with that of 4b. The corresponding reaction of 2‐(E‐2‐nitroethenyl)thiophene ( 8b ) gave a 4% yield of naphtho[2,1‐ b ]thiophene‐6,9‐dione ( 9b ), previously prepared in 24% yield [12] in a three‐step procedure involving 2‐ethenylthiophene. Introducing an electron‐releasing 2‐methyl substituent into 8a and 8b gave 12a and 12b , which, upon reaction with 1,4‐benzoquinone, gave 2‐methylnaphtho[2,1‐b]furan‐6, 9‐dione ( 13a ) and its sulfur analog ( 13b ) in yields of 4 and 8%, respectively.  相似文献   

2.
The [1,1′‐biisoquinoline]‐4,4′‐diol ( 4a ), which was obtained as hydrochloride 4a ?2 HCl in two steps starting from the methoxymethyl (MOM)‐protected 1‐chloroisoquinoline 8 (Scheme 3), opens access to further O‐functionalized biisoquinoline derivatives. Compound 4a ?2 HCl was esterified with 4‐(hexadecyloxy)benzoyl chloride ( 5b ) to give the corresponding diester 3b (Scheme 4), which could not be obtained by Ni‐mediated homocoupling of 6b (Scheme 2). The ether derivative 2b was accessible in good yield by reaction of 4a ?2 HCl with the respective alkyl bromide 9 under the conditions of Williamson etherification (Scheme 4). Slightly modified conditions were applied to the esterification of 4a ?2 HCl with galloyl chlorides 10a – h as well as etherification of 4a ?2 HCl with 6‐bromohexyl tris(alkyloxy)benzoates 11b , d – h and [(6‐bromohexyl)oxy]‐substituted pentakis(alkyloxy)triphenylenes 14a – c (Scheme 5). Despite the bulky substituents, the respective target 1,1′‐biisoquinolines 12, 13 , and 15 were isolated in 14–86% yield (Table).  相似文献   

3.
A series of novel (Z)‐1‐tert‐butyl (or phenyl)‐2‐(1H‐1,2,4‐triazol‐1‐yl)‐ethanone O‐[2,4‐dimethylthiazole (or 4‐methyl‐1,2,3‐thiadiazole) ?5‐carbonyl] oximes 5a – 5c and (1Z, 3Z)‐4,4‐dimethyl‐1‐substitutedphenyl‐2‐(1H‐1,2,4‐triazol‐1‐yl)‐pent‐1‐en‐3‐one O‐[2,4‐dimethylthiazole (or 4‐methyl‐1,2,3‐thiadiazole)‐5‐carbonyl] oximes 6a – 6e were synthesized by the condensations of (Z)‐1‐tert‐butyl (or phenyl)‐2‐(1H‐1,2,4‐triazol‐1‐yl)‐ethanone oximes 3 or (1Z, 3Z)‐4,4‐dimethyl‐1‐substitutedphenyl‐2‐(1H‐1,2,4‐triazol‐1‐yl)‐pent‐1‐en‐3‐one oximes 4 with 2,4‐dimethylthiazole‐5‐carbonyl chloride or 4‐methyl‐1,2,3‐thiadiazole‐5‐carbonyl chloride in the basic condition. Their structures were confirmed by IR, 1H NMR, mass spectroscopy, and elemental analyses. The results of preliminary bioassays showed the title compounds 5 and 6 exhibited moderate to good fungicidal activities. For example, compound 6c possessed 86.4% inhibition against Fusarium oxysporum, and compound 6b exhibited 86.4 and 100% inhibition against Fusarium oxysporum and Cercospora arachidicola Hori at the concentration of 50 mg/L, respectively.  相似文献   

4.
Photosensitive poly(amic acid ester)s (PAEs) with 2‐hydroxy‐4‐oxo‐hept‐5‐enyl side group were simply synthesized from a non‐photosensitive polyamic acid (PAA), which was prepared from cyclobutane‐1,2,3,4‐tetracarboxylic dianhydride (CBDA) and 4,4′‐diaminodiphenyl ether (DDE) in N‐methyl‐2‐pyrrolidinone (NMP). 1‐oxiranyl‐pent‐3‐en‐2‐one was added to the poly(amic acid) solution to give the photosensitive PAEs by a ring opening esterification of the poly(amic acid). The esterification reaction was conducted with changing a reaction time and amounts of 1‐oxiranyl‐pent‐3‐en‐2‐one. The degree of esterification (DOE) increased with increasing esterification reaction time and amounts of 1‐oxiranyl‐pent‐3‐en‐2‐one. A photo‐lithography evaluation for the PAE‐D4 with the highest DOE was conducted in the presence of 1‐[4‐(phenylthio)phenyl]‐2‐(O‐benzoyloxime)‐1,2‐octanedione (PPBO) as a photoinitiator at a wavelength of 365 nm using a high‐pressure mercury lamp. The normalized film thicknesses for PAE‐D3 were measured with various post‐exposure baking (PEB) temperatures, which showed that the optimum PEB temperature was 120°C. The resolution of the resulting polyimide film cured at 250°C for 60 min was 25 µm. The initial decomposition temperature of the polyimide film was around 354°C and there was no weight loss at the temperature of 250–350°C. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Treatment of symmetrically substituted maleic anhydrides (=furan‐2,5‐diones) 6 with lithium (phenylsulfonyl)methanide, followed by methylation of the adduct with MeI/K2CO3 in acetone, give the corresponding 4,5‐disubstituted 2‐methyl‐2‐(phenylsulfonyl)cyclopent‐4‐ene‐1,3‐diones 8 (Scheme 3). Reaction of the latter with lithium (phenylsulfonyl)methanide in THF (?78°) and then with 4 mol‐equiv. BuLi (?5° to r.t.) leads to 5,6‐disubstituted 4‐methyl‐2‐(phenylsulfonyl)benzene‐1,3‐diols 9 (Scheme 4).  相似文献   

6.
Diaminomethylenehydrazones of cyclic ketones 1–5 reacted with ethyl N‐cyanoimidate (I) at room temperature or with bis(methylthio)methylenecyanamide (II) under brief heating to give directly the corresponding spiro[cycloalkane[1′,2′,4′]triazolo[1′,5′,‐a][1′,3′‐5′]triazine] derivatives 7–12 in moderate to high yields. Ring‐opening reaction of the spiro[cycloalkanetriazolotriazine] derivatives occurred at the cycloalkane moiety upon heating in solution to give 2‐alkyl‐5‐amino[1,2,4]triazolotriazines 13–16. Diaminomethylenehydrazones 17–19, of hindered acyclic ketones, gave 2‐methyl‐7‐methylthio[1,2,4]‐triazolo[1,5‐a][1,3,5]triazines 21–23 by the reaction with II as the main products with apparent loss of 2‐methylpropane from the potential precursor, 2‐tert‐butyl‐2‐methyl‐7‐methylthio[1,2,4]triazolo[1,5‐a]‐[1,3,5]triazines 20, in good yields. In general, bis(methylthio)methylenecyanamide II was found to be a favorable reagent to the one‐step synthesis of the spiro[cycloalkanetriazolotriazine] derivatives from the diaminomethylenehydrazones. The spectral data and structural assignments of the fused triazine products are discussed.  相似文献   

7.
The synthesis of methyl N‐(1‐aza‐6‐oxaspiro[2.5]oct‐1‐en‐2‐yl)‐L ‐prolinate ( 1e ) has been performed by consecutive treatment of methyl N‐[(tetrahydro‐2H‐pyran‐4‐yl)thiocarbonyl]‐L ‐prolinate ( 5 ) with COCl2, 1,4‐diazabicyclo[2.2.2]octane (DABCO), and NaN3 (Scheme 1). As the first example of a novel class of dipeptide synthons, 1e has been shown to undergo the expected reactions with carboxylic acids and thioacids (Scheme 2). The successful preparation of the nonapeptide 16 , which is an analogue of the C‐terminal nonapeptide of the antibiotic Trichovirin I 1B, proved that 1e can be used in peptide synthesis as a dipeptide building block (Scheme 3). The structure of 7 has been established by X‐ray crystal‐structure analysis (Figs. 1 and 2).  相似文献   

8.
The Schiff base enaminones (3Z)‐4‐(5‐ethylsulfonyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C13H17NO4S, (I), and (3Z)‐4‐(5‐tert‐butyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C15H21NO2, (II), were studied by X‐ray crystallography and density functional theory (DFT). Although the keto tautomer of these compounds is dominant, the O=C—C=C—N bond lengths are consistent with some electron delocalization and partial enol character. Both (I) and (II) are nonplanar, with the amino–phenol group canted relative to the rest of the molecule; the twist about the N(enamine)—C(aryl) bond leads to dihedral angles of 40.5 (2) and −116.7 (1)° for (I) and (II), respectively. Compound (I) has a bifurcated intramolecular hydrogen bond between the N—H group and the flanking carbonyl and hydroxy O atoms, as well as an intermolecular hydrogen bond, leading to an infinite one‐dimensional hydrogen‐bonded chain. Compound (II) has one intramolecular hydrogen bond and one intermolecular C=O...H—O hydrogen bond, and consequently also forms a one‐dimensional hydrogen‐bonded chain. The DFT‐calculated structures [in vacuo, B3LYP/6‐311G(d,p) level] for the keto tautomers compare favourably with the X‐ray crystal structures of (I) and (II), confirming the dominance of the keto tautomer. The simulations indicate that the keto tautomers are 20.55 and 18.86 kJ mol−1 lower in energy than the enol tautomers for (I) and (II), respectively.  相似文献   

9.
In this study, 10 different substituted aromatic bis‐benzaldehydes were synthesized by treating hydroxy benzaldehydes with various dihaloalkanes. Bis aldehydes 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h , 5i , 5j were treated with 2‐(5‐phenyl‐1H‐tetrazole‐1‐yl)acetohydrazide ( 3 ) in acidic medium and in the presence of ammonium acetate to yield a series of new isomeric bis(2‐(5‐((5‐phenyl‐1H‐tetrazol‐1‐yl)methyl)‐4H‐1,2,4‐triazol‐3‐yl)phenoxy)alkanes ( 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j ) in excellent to good yield. The newly synthesized compounds were characterized by the available spectroscopic analysis.  相似文献   

10.
A new route is presented to prepare analogs of nucleosides homologated at the 3′‐ and 5′‐positions. This route, applicable to both the D ‐ and L ‐enantiomeric forms, is suitable for the preparation of monomeric bis‐homonucleosides needed for the synthesis of oligonucleotide analogs. It begins with the known monobenzyl ether 3 of pent‐2‐yne‐1,5‐diol, which is reduced to alkenol 4 . Sharpless asymmetric epoxidation of 4 , followed by opening of the epoxide 5 with allylmagnesium bromide, gives a mixture of diols 6 and 7 . Protection of the primary alcohol as a silyl ether followed by treatment with OsO4, NaIO4, and mild acid in MeOH, followed by reduction, yields (2R,3R) {{[(tert‐butyl)diphenylsilyl]oxy}methyl}tetrahydro‐2‐(2‐hydroxyethyl)‐5‐methoxyfuran (=methyl 3‐{{[(tert‐butyl)diphenylsilyl]oxy}methyl}‐2,3,5‐trideoxy‐α/β‐D ‐erythro‐hexafuranoside; 10 ) (Scheme 1). Protected nucleobases are added to this skeleton with the aid of trimethylsilyl triflate (Scheme 2). The o‐toluoyl (2‐MeC6H4CO) and p‐anisoyl (4‐MeOC6H4CO) groups were used to protect the exocyclic amino group of cytosine. The bis‐homonucleoside analogs 11 and 14a are then converted to monothiol derivatives suitable for coupling (Schemes 3 and 4) to oligonucleotide analogs with bridging S‐atoms. This synthesis replaces a much longer synthesis for analogous nucleoside analogs that begins with diacetoneglucose (=1,2 : 5,6‐di‐O‐isopropylideneglucose), with the stereogenic centers in the final products derived from the Sharpless asymmetric epoxidation. The new route is useful for large‐scale synthesis of these building blocks for the synthesis of oligonucleotide analogs.  相似文献   

11.
The intermolecular cyclopropanation of styrene with ethyl diazo(triethylsilyl)acetate ( 1a ) proceeds at room temperature in the presence of chiral RhII carboxylate catalysts derived from imide‐protected amino acids and affords mixtures of trans‐ and cis‐cyclopropane derivatives 2a in up to 72% yield but with modest enantioselectivities (<54%) (Scheme 1 and Table 1). Protiodesilylation of a diastereoisomer mixture 2a with Bu4NF is accompanied by epimerization at C(1) (→ 3 ). The intramolecular cyclopropanation of allyl diazo(triethylsilyl)acetate ( 8a ), in turn, affords optically active 3‐oxabicyclo[3.1.0]hexan‐2‐one ( 9a ) with yields of up to 85% and 56% ee (Scheme 3 and Table 2). Similarly, the (2Z)‐pent‐2‐enyl derivative 8d reacts to 9d in up to 77% yield and 38% ee (Scheme 3 and Table 3). In contrast, the diazo decomposition of (2E)‐3‐phenylprop‐2‐enyl and 2‐methylprop‐2‐en‐1‐yl diazo(triethyl‐silyl)acetates ( 8b and 8c , resp.) is unsatisfactory and gives very poor yields of substituted 3‐oxabicyclo[3.1.0]hexan‐2‐ones 9b and 9c , respectively (Table 3).  相似文献   

12.
Addition of various amines to the 3,3‐bis(trifluoromethyl)acrylamides 10a and 10b gave the tripeptides 11a – 11f , mostly as mixtures of epimers (Scheme 3). The crystalline tripeptide 11f 2 was found to be the N‐terminal (2‐hydroxyethoxy)‐substituted (R,S,S)‐ester HOCH2CH2O‐D ‐Val(F6)‐MeLeu‐Ala‐OtBu by X‐ray crystallography. The C‐terminal‐protected tripeptide 11f 2 was condensed with the N‐terminus octapeptide 2b to the depsipeptide 12a which was thermally rearranged to the undecapeptide 13a (Scheme 4). The condensation of the epimeric tripeptide 11f 1 with the octapeptide 2b gave the undecapeptide 13b directly. The undecapeptides 13a and 13b were fully deprotected and cyclized to the [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐D ‐valine]]‐ and [5‐[4,4,4,4′,4′,4′‐hexafluoro‐N‐(2‐hydroxyethoxy)‐L ‐valine]]cyclosporins 14a and 14b , respectively (Scheme 5). Rate differences observed for the thermal rearrangements of 12a to 13a and of 12b to 13b are discussed.  相似文献   

13.
The new protecting groups 1a , b and 2a , b were developed for the 5′‐OH group of deoxynucleosides by utilizing the unique characters of the sulfenate and sulfenamide linkage. These new protecting groups have a 2‐(hydroxymethyl)benzoyl or 2‐[(methylamino)methyl]benzoyl skeleton whose hydroxy O‐atom or amino N‐atom was blocked with a tritylthio‐type substituent. They are removable by intramolecular cyclization following the oxidative hydrolysis of the tritylthio‐type substituents under mildly oxidative conditions (Schemes 3 and 6). Among them, 2‐{{[(4‐methoxytrityl)sulfenyl]oxy}methyl}benzoyl (MOB; 2b ) was found to be the most preferable for protection of the 5′‐OH function of deoxynucleosides. MOB can be introduced at the 5′‐OH groups of various deoxynucleosides without the protection of the 3′‐OH functions (Scheme 5). The applicability of the MOB group to a new oligodeoxynucleotide synthesis protocol without acid treatment was demonstrated by the solid‐phase synthesis of a tetrathymidylate (Scheme 8).  相似文献   

14.
The reaction of S‐methylisothiosemicarbazide hydroiodide (=S‐methyl hydrazinecarboximidothioate hydroiodide; 1 ), prepared from thiosemicarbazide by treatment with MeI in EtOH, and aryl isoselenocyanates 5 in CH2Cl2 affords 3H‐1,2,4‐triazole‐3‐selone derivatives 7 in good yield (Scheme 2, Table 1). During attempted crystallization, these products undergo an oxidative dimerization to give the corresponding bis(4H‐1,2,4‐triazol‐3‐yl) diselenides 11 (Scheme 3). The structure of 11a was established by X‐ray crystallography.  相似文献   

15.
Starting from methyl 2,3‐O‐isopropylidene‐α‐D ‐mannofuranoside ( 5 ), methyl 6‐O‐benzyl‐2,3‐O‐isopropylidene‐α‐D ‐lyxo‐hexofuranosid‐5‐ulose ( 12 ) was prepared in three steps. The addition reaction of dimethyl phosphonate to 12 , followed by deoxygenation of 5‐OH group, provided the 5‐deoxy‐5‐dimethoxyphosphinyl‐α‐D ‐mannofuranoside derivative 15a and the β‐L ‐gulofuranoside isomer 15b . Reduction of 15a and 15b with sodium dihydrobis(2‐methoxyethoxy)aluminate, followed by the action of HCl and then H2O2, afforded the D ‐mannopyranose ( 17 ) and L ‐gulopyranose analog 21 , each having a phosphinyl group in the hemiacetal ring. These were converted to the corresponding 1,2,3,4,6‐penta‐O‐acetyl‐5‐methoxyphosphinyl derivatives 19 and 23 , respectively, structures and conformations (4C1 or 1C4, resp.) of which were established by 1H‐NMR spectroscopy.  相似文献   

16.
Two methods for the preparation of N‐methyl‐4‐(methylthio)thieno[2,3‐d]pyrimidinium salts 6a,b and 13a,b are described. Treatment of 6a,b and/or 13a,b with active methylene compounds such as malononitrile and ethyl cyanoacetate in the presence of sodium methoxide caused nucleophilic addition followed by elimination of methanethiol, giving the corresponding N‐methyl‐4‐ylidenethieno[2,3‐d]‐pyrimidines 7a,b, 8a,b, 14a,b and 15a,b .  相似文献   

17.
New N,N'‐bis(alkoxycarbonyl)‐L‐cystine bis(methylamides) 4a, 4b and N,N'‐bis(benzyloxycarbonyl)‐L‐cystine bis(methylamide) 4c have been synthesized by mixed anhydride method from the essential amino acid L‐cystine 1 in good yield. These cystine bis(methylamides) 4a,b,c have been cyclized with sulfuryl chloride. New 2‐methyl‐4‐amino‐3‐isothiazolone and 5‐chloro‐2‐methyl‐4‐amino‐3‐isothiazolone hydrobromide salts 7, 8 have been obtained by deacylation of 2‐methyl‐4‐(benzyloxycarbonyl)amino‐3‐isothiazolone 5c and 5‐chloro‐2‐methyl‐4‐(benzyloxycarbonyl)amino‐3‐isothiazolone 6c with hydrogen bromide in acetic acid. The microbicidal effect of the new 2‐methy]‐3‐isothiazolones 5a,b,c; 6a,b,c; 7 and 8 compounds obtained by the above method has been investigated.  相似文献   

18.
The influence of the carbohydrate moiety on the formation of 2‐[4‐oxo‐3‐(pyrrolidin‐1‐yl)cyclopent‐2‐en‐1‐ylidene]furan‐3(2H)‐one chromophores during food‐related Maillard reactions from pentoses, hexoses, and disaccharides is reported. The orange compounds 1a , b and 2a , b , detected in a roasted xylose/ L ‐proline mixture, were identified as (2E)/(2Z)‐4‐hydroxy‐5‐methyl‐2‐[4‐oxo‐3‐(pyrrolidin‐1‐yl)cyclopent‐2‐ene‐1‐ylidene]furan‐3(2H)‐one and (2E)/(2Z)‐5‐methyl‐2‐[4‐oxo‐3‐(pyrrolidin‐1‐yl)cyclopent‐2‐en‐1‐ylidene]‐4‐(pyrrolidin‐1‐yl)furan‐3(2H)‐one, respectively, by 1D‐ and 2D‐NMR, LC/mass, and UV/VIS spectroscopy, as well as by synthetic experiments. Studies on their formation revealed that 1a , b and 2a , b are formed upon condensation of pentose‐derived 4‐hydroxy‐5‐methyl‐ ( 3 ) and 5‐methyl‐4‐(pyrrolidin‐1‐yl)furan‐3(2H)‐one ( 4 ), respectively, with 2‐hydroxycyclopenta‐2,4‐dien‐1‐one ( 5 ) and L ‐proline (Scheme 1). Further condensation reaction of 1a , b with furan‐2‐carbaldehyde yielded the red (2Z)‐2‐{(5Z)‐5‐[(2‐furyl)methylidene]‐4‐oxo‐3‐(pyrrolidin‐1‐yl)cyclopent‐2‐en‐1‐ylidene}‐4‐hydroxy‐5‐methylfuran‐3(2H)‐one ( 6 ) as an additional novel Maillard chromophore. Replacement of the pentose by glucose in the mixture with L ‐proline led, after dry‐heating, to the identification of the structurally related colored (2Z)/(2E)‐2‐[5‐hydroxy‐5‐methyl‐4‐oxo‐3‐(pyrrolidin‐1‐yl)cyclopent‐2‐en‐1‐ylidene]‐4‐hydroxy‐5‐methylfuran‐3(2H)‐one ( 7a / 7b ) and to the characterization of 2,4,5‐trihydroxy‐5‐methylcyclopent‐2‐en‐1‐one ( 10 ) and 5‐hydroxy‐5‐methylcyclopent‐3‐ene‐1,2‐dione ( 11 ) as key intermediates in chromophore formation from hexoses. Comparative studies on disaccharides revealed that not 7a / 7b , but the colorless 4‐(α‐D ‐glucopyranosyloxy)‐2‐hydroxy‐2‐methyl‐6H‐pyran‐3(2H)‐one ( 8 ) and 2‐(α‐D ‐glucopyranosyloxy)‐4,5‐dihydroxy‐5‐methylcyclopent‐2‐en‐1‐one ( 9 ) were formed amongst the major degradation products of maltose (Scheme 4). The aglycons of 8 and 9 could not be liberated under food‐related heating conditions, thus, inhibiting the formation of the color precursors 10 and 11 and, in consequence, of 7a / 7b (Scheme 6). These data strongly suggest that the 1,4‐glycosidic linkage of disaccharides is responsible for their lower efficiency in browning development compared to pentoses or hexoses.  相似文献   

19.
The syntheses of N7‐glycosylated 9‐deazaguanine 1a as well as of its 9‐bromo and 9‐iodo derivatives 1b , c are described. The regioselective 9‐halogenation with N‐bromosuccinimide (NBS) and N‐iodosuccinimide (NIS) was accomplished at the protected nucleobase 4a (2‐{[(dimethylamino)methylidene]amino}‐3,5‐dihydro‐3‐[(pivaloyloxy)methyl]‐4H‐pyrrolo[3,2‐d]pyrimidin‐4‐one). Nucleobase‐anion glycosylation of 4a – c with 2‐deoxy‐3,5‐di‐O‐(p‐toluoyl)‐α‐D ‐erythro‐pentofuranosyl chloride ( 5 ) furnished the fully protected intermediates 6a – c (Scheme 2). They were deprotected with 0.01M NaOMe yielding the sugar‐deprotected derivatives 8a – c (Scheme 3). At higher concentrations (0.1M NaOMe), also the pivaloyloxymethyl group was removed to give 7a – c , while conc. aq. NH3 solution furnished the nucleosides 1a – c . In D2O, the sugar conformation was always biased towards S (67–61%).  相似文献   

20.
The [3,3′(4H,4′H)‐bi‐2H‐1,3‐oxazine]‐4,4′‐diones 3a – 3i were obtained by [2+4] cycloaddition reactions of furan‐2,3‐diones 1a – 1c with aromatic aldazines 2a – 2d (Scheme 1). So, new derivatives of bi‐2H‐1,3‐oxazines and their hydrolysis products, 3,5‐diaryl‐1H‐pyrazoles 4a – 4c (Scheme 3), which are potential biologically active compounds, were synthesized for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号