首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To model the photosynthetic reaction center, the chlorin - fullerene dyad 1 was synthesized in a one-pot reaction from a linear tetrapyrrole and C(60). It is the first dyad of this type which contains a fullerene and a chlorin unit, the chromophore of naturally occurring photosynthetic systems.  相似文献   

2.
Chlorin e6 derivative and water-soluble dyad resulting from covalent bonding of polyanionic fullerene С60 derivative to chlorin e6 derivative were synthesized and studied for spectral properties and photochemical activity. A considerable change in the absorption spectra and pronounced fluorescence quenching for the chlorin moiety included in the dyad were identified. The singlet excited state of chlorin is quenched via electron transfer from the excited chlorin to the fullerene core. A comparison of the photochemical activities of the test compounds in aqueous solutions showed a tenfold increase in the photochemical activity of the chlorin–fullerene dyad compared with free chlorin per absorbed light quantum.  相似文献   

3.
A new amide‐linked phthalocyanine‐fullerene dyad ZnPc‐C60 was synthesized and characterized. The photophysical and electrochemical properties of the ZnPc‐C60 dyad were investigated. The fluorescence spectrum and quantum yield in different solvents showed the occurrence of photoinduced electron transfer (PET) from the singlet excited ZnPc to C60, which was further confirmed by nanosecond transient absorption spectra and cyclic voltammetry data. The free energy change for charge separation (ΔGCS) was estimated to be exothermic with ?0.51 eV, which favored the formation of charge‐separation state. The PET from ZnPc to C60 in ZnPc‐C60 made the dyad exhibit stronger reverse saturable absorption performance compared with C60 and the control sample in the Z‐scan experiments, which indicated the synergistic effect of two active moieties in the dyad.  相似文献   

4.
An efficient functional mimic of the photosynthetic antenna‐reaction center has been designed and synthesized. The model contains a near‐infrared‐absorbing aza‐boron‐dipyrromethene (ADP) that is connected to a monostyryl boron‐dipyrromethene (BDP) by a click reaction and to a fullerene (C60) using the Prato reaction. The intramolecular photoinduced energy and electron‐transfer processes of this triad as well as the corresponding dyads BDP‐ADP and ADP‐C60 have been studied with steady‐state and time‐resolved absorption and fluorescence spectroscopic methods in benzonitrile. Upon excitation, the BDP moiety of the triad is significantly quenched due to energy transfer to the ADP core, which subsequently transfers an electron to the fullerene unit. Cyclic and differential pulse voltammetric studies have revealed the redox states of the components, which allow estimation of the energies of the charge‐separated states. Such calculations show that electron transfer from the singlet excited ADP (1ADP*) to C60 yielding ADP.+‐C60.? is energetically favorable. By using femtosecond laser flash photolysis, concrete evidence has been obtained for the occurrence of energy transfer from 1BDP* to ADP in the dyad BDP‐ADP and electron transfer from 1ADP* to C60 in the dyad ADP‐C60. Sequential energy and electron transfer have also been clearly observed in the triad BDP‐ADP‐C60. By monitoring the rise of ADP emission, it has been found that the rate of energy transfer is fast (≈1011 s?1). The dynamics of electron transfer through 1ADP* has also been studied by monitoring the formation of C60 radical anion at 1000 nm. A fast charge‐separation process from 1ADP* to C60 has been detected, which gives the relatively long‐lived BDP‐ADP.+C60.? with a lifetime of 1.47 ns. As shown by nanosecond transient absorption measurements, the charge‐separated state decays slowly to populate mainly the triplet state of ADP before returning to the ground state. These findings show that the dyads BDP‐ADP and ADP‐C60, and the triad BDP‐ADP‐C60 are interesting artificial analogues that can mimic the antenna and reaction center of the natural photosynthetic systems.  相似文献   

5.
Electrochemical oxidation of sodium copper chlorophyllin (CHL) has been investigated at a glassy‐carbon (GC) and paraffin‐impregnated graphite electrode (PIGE) using square‐wave voltammetry (SWV). Square‐wave voltammograms of other two chlorin‐type compounds, namely chlorin e6 and chlorophyll a, have been studied as well. The measurements were performed in the pH range between 7 and 11. The square‐wave frequency was changed between 8 and 1000 Hz. The oxidation of studied chlorins is a complex, pH‐independent, reversible or quasireversible process, followed by the chemical transformation of the product. The product of the EC reaction of CHL is an electroactive π? π dimer, which strongly adsorbs on the electrode surface and undergoes further oxidation at more positive potential. The electrooxidation of the adsorbed dimer is a pH‐independent irreversible process with the formation of an electroinactive film. The voltammetric behaviour of chlorin e6 on PIGE was qualitatively similar to that of CHL. The SW voltammograms of chlorin e6 recorded on GCE and of chlorophyll a recorded on PIGE consisted of only one peak. The SW responses of studied compounds strongly depend on the stabilization of the reaction intermediate by adsorption to the electrode surface.  相似文献   

6.
Palladium‐catalyzed intramolecular reactions of 2‐bromo 1,6‐dienes followed by intermolecular [4+2] cycloaddition with suitable dienophiles in one‐pot operations gave hexahydroindenes 8 and 9 in yields of 40–78%, an hexahydro‐s‐indacene derivative 13 could be obtained in up to 25% yield with cyclopent‐2‐en‐1‐one ( 10 ) as a dienophile in the presence of different Lewis acids, and a spirocyclopentane‐hexahydroindenone 18 could be isolated in 72% yield. When in‐situ‐formed iminium salts were used as heterodienophiles, hexahydro‐1H‐[2]pyrindinols 31 could be obtained in a one‐pot two‐step operation in 29–46% yield.  相似文献   

7.
A chemoenzymatic synthon was designed to expand the scope of the chemoenzymatic synthesis of carbohydrates. The synthon was enzymatically converted into carbohydrate analogues, which were readily derivatized chemically to produce the desired targets. The strategy is demonstrated for the synthesis of glycosides containing 7,9‐di‐N‐acetyllegionaminic acid (Leg5,7Ac2), a bacterial nonulosonic acid (NulO) analogue of sialic acid. A versatile library of α2‐3/6‐linked Leg5,7Ac2‐glycosides was built by using chemically synthesized 2,4‐diazido‐2,4,6‐trideoxymannose as a chemoenzymatic synthon for highly efficient one‐pot multienzyme (OPME) sialylation followed by downstream chemical conversion of the azido groups into acetamido groups. The syntheses required 10 steps from commercially available d ‐fucose and had an overall yield of 34–52 %, thus representing a significant improvement over previous methods. Free Leg5,7Ac2 monosaccharide was also synthesized by a sialic acid aldolase‐catalyzed reaction.  相似文献   

8.
Synthesis and characterization of bis[2‐(arylimino)‐1,3‐thiazolidin‐4‐ones] are described. The one‐pot, pseudo‐five‐component reaction of an aliphatic diamine, isothiocyanatobenzene, and dialkyl but‐2‐ynedioate at room temperature in anhydrous CH2Cl2 gives the title compound in relatively high yield. Under the same conditions, aromatic 1,2‐diamines yield 2‐(arylimino)‐N‐(enaminoaryl)‐1,3‐thiazolidin‐4‐ones in a pseudo‐four‐component reaction. Their structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization is proposed (Scheme 3).  相似文献   

9.
A new polymeric dyad of oligo‐anthracene‐block‐poly(3‐hexylthiophene) (Oligo‐ANT‐b‐P3HT) has been synthesized as a donor–donor dyad building block for organic photovoltaics. The polymer dyad and oligomer of anthracene‐9,10‐diyl (Oligo‐ANT) are prepared by Grignard Metathesis. The higher order of crystallinity and molecular chains ordering at solid phase reveal the intrinsic optical and electrical properties of polymeric dyad resulting in relatively higher light harvesting ability compared to the oligo(anthracene‐9,10‐diyl). The UV‐visible spectrum of (Oligo‐ANT‐b‐P3HT) in solution shows broad absorption with two sets of absorption from both anthracene and thiophene core units, covering a wide range of the visible spectrum. The test devices of the blends of polymeric dyad with fullerene C61 (PCBM) show improved photovoltaic performance with a power conversion efficiency of 3.26% upon subjecting to pre‐fabrication thermal treatments. With optimized morphology of the interpenetrating network and the shorter fluorescence lifetime of the annealed dyad/PCBM blends, the effective charge transfer from the donor dyad to PCBM has evidenced. Thus, these studies will allow further synthetic advances to make potential high crystalline polymeric dyads with significantly improved light harvesting capability. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3032–3045  相似文献   

10.
Chitosan sulfonic acid (CS–SO3H), a biodegradable green catalyst, was found to be an impressive system for one‐pot four‐component reaction of different aromatic aldehydes, 3‐acetylcoumarin, dimedone, and ammonium acetate leading to 7,7‐dimethyl‐2‐(2‐oxo‐2H‐chromen‐3‐yl)‐4‐aryl‐7,8‐dihydroquinolin‐5(6H)‐one under solvent‐free condition. This methodology produces diverse superiorities such as operational simplicity, short reaction time, and high yield. Further, the catalyst can be reused for four times without any noticeable decrease in the catalytic activity.  相似文献   

11.
A new low‐band gap dyad DPP‐Ful, which consists of covalently linked dithiafulvalene‐functionalized diketopyrrolopyrrole as donor and fullerene (C60) as the acceptor, has been designed and synthesized. Organic solar cells were successfully constructed using the DPP‐Ful dyad as an active layer. This system has a record power‐conversion efficiency (PCE) of 2.2 %, which is the highest value when compared to reported single‐component organic solar cells.  相似文献   

12.
A coupled light‐harvesting antenna–charge‐separation system, consisting of self‐assembled zinc chlorophyll derivatives that incorporate an electron‐accepting unit, is reported. The cyclic tetramers that incorporated an electron acceptor were constructed by the co‐assembly of a pyridine‐appended zinc chlorophyll derivative, ZnPy , and a zinc chlorophyll derivative further decorated with a fullerene unit, ZnPyC60 . Comprehensive steady‐state and time‐resolved spectroscopic studies were conducted for the individual tetramers of ZnPy and ZnPyC60 as well as their co‐tetramers. Intra‐assembly singlet energy transfer was confirmed by singlet–singlet annihilation in the ZnPy tetramer. Electron transfer from the singlet chlorin unit to the fullerene unit was clearly demonstrated by the transient absorption of the fullerene radical anion in the ZnPyC60 tetramer. Finally, with the co‐tetramer, a coupled light‐harvesting and charge‐separation system with practically 100 % quantum efficiency was demonstrated.  相似文献   

13.
We developed a one‐pot reaction combining an exchange reaction of the benzylidene moiety in an acyl hydrazone with styrene radical polymerization. The one‐pot reaction of a styrene derivative bearing a 4‐(dimethylamino)benzylidene acyl hydrazone moiety was conducted in the presence of 4‐cyanobenzaldehyde and pyridinium p‐toluene sulfonate/H2O for the exchange reaction and AIBN as the radical polymerization initiator in N,N‐dimethylformamide at 70 °C for 20 h. The exchange reaction proceeded quantitatively, with the 4‐(dimethylamino)benzylidene acyl hydrazone moiety being exchanged with 4‐(methoxy)benzylidene acyl hydrazone, and polymerization proceeded smoothly to provide the corresponding polymer in 70% yield. Compared to traditional stepwise methods and polymer post‐polymerization modifications, this one‐pot system exhibits distinct advantages for the facile and efficient preparation of various functional polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2505–2510  相似文献   

14.
Four putative functionalized α‐chloroakyllithiums RCH2CHLiCl, where R=CHCH2 ( 18 a ), CCH ( 18 b ), CH2OBn ( 18 c ), and CH[O(CH2)2O] ( 18 d ), were generated in situ by sulfoxide–lithium exchange from α‐chlorosulfoxides, and investigated for the stereospecific reagent‐controlled homologation (StReCH) of phenethyl and 2‐chloropyrid‐5‐yl ( 17 ) pinacol boronic esters. Deuterium labeling experiments revealed that αchloroalkyllithiums are quenched by proton transfer from their αchlorosulfoxide precursors and it was established that this effect compromises the yield of StReCH reactions. Use of α‐deuterated α‐chlorosulfoxides was discovered to ameliorate the problem by retarding the rate of acid‐base chemistry between the carbenoid and its precursor. Carbenoids 18 a and 18 b showed poor StReCH efficacy, particularly the propargyl group bearing carbenoid 18 b , the instability of which was attributed to a facile 1,2‐hydride shift. By contrast, 18 d , a carbenoid that benefits from a stabilizing interaction between O and Li atoms gave good StReCH yields. Boronate 17 was chain extended by carbenoids 18 a , 18 b , and 18 d in 16, 0, and 68 % yield, respectively; α‐deuterated isotopomers D ‐ 18 a and D ‐ 18 d gave yields of 33 and 79 % for the same reaction. Double StReCH of 17 was pursued to target contiguous stereodiads appropriate for the total synthesis of (?)‐epibatidine ( 15 ). One‐pot double StReCH of boronate 17 by two exposures to (S)‐D ‐ 18 a (≤66 % ee), followed by work‐up with KOOH, gave the expected stereodiad product in 16 % yield (d.r.~67:33). The comparable reaction using two exposures to (S)‐D ‐ 18 d (≤90 % ee) delivered the expected bisacetal containing stereodiad (R,R)‐DD ‐ 48 in 40 % yield (≥98 % ee, d.r.=85:15). Double StReCH of 17 using (S)‐D ‐ 18 d (≤90 % ee) followed by (R)‐D ‐ 18 d (≤90 % ee) likewise gave (R,S)‐DD ‐ 48 in 49 % yield (≥97 % ee, d.r.=79:21). (R,S)‐DD ‐ 48 was converted to a dideuterated isotopomer of a synthetic intermediate in Corey’s synthesis of 15 .  相似文献   

15.
In the present study, a biomimetic reaction center model, that is, a molecular triad consisting of a chlorin dimer and an azafulleroid, is synthesized and its photophysical properties are studied in comparison with the corresponding molecular dyad, which consists only of a chlorin monomer and an azafulleroid. As evidenced by 1H NMR, UV/Vis, and fluorescence spectroscopy, the chlorin dimer–azafulleroid folds in nonpolar media into a C2‐symmetric geometry through hydrogen bonding, resulting in appreciable electronic interactions between the chlorins, whereas in polar media the two chlorins diverge from contact. Femtosecond transient absorption spectroscopy studies reveal longer charge‐separated states for the chlorin dimer–azafulleroid; ≈1.6 ns in toluene, compared with the lifetime of ≈0.9 ns for the corresponding chlorin monomer–azafulleroid in toluene. In polar media, for example, benzonitrile, similar charge‐separated states are observed, but the lifetimes are inevitably shorter: 65 and 73 ps for the dimeric and monomeric chlorin–azafulleroids, respectively. Nanosecond transient absorption and singlet oxygen phosphorescence studies corroborate that in toluene, the charge‐separated state decays indirectly via the triplet excited state to the ground state, whereas in benzonitrile, direct recombination to the ground state is observed. Complementary DFT studies suggest two energy‐minima conformations, that is, a folded chlorin dimer–azafulleroid, which is present in nonpolar media, and another conformation in polar media, in which the two hydrophobic chlorins wrap the azafulleroid. Inspection of the frontier molecular orbitals shows that in the folded conformation, the HOMO on each chlorin is equivalent and is shared owing to partial π–π overlap, resulting in delocalization of the conjugated π electrons, whereas the wrapped conformation lacks this stabilization. As such, the longer charge‐separated lifetime for the dimer is rationalized by both the electron donor–acceptor separation distance and the stabilization of the radical cation through delocalization. The chlorin folding seems to change the photophysical properties in a manner similar to that observed in the chlorophyll dimer in natural photosynthetic reaction centers.  相似文献   

16.
A high potential donor–acceptor dyad composed of zinc porphyrin bearing three meso‐pentafluorophenyl substituents covalently linked to C60, as a novel dyad capable of generating charge‐separated states of high energy (potential) has been developed. The calculated energy of the charge‐separated state was found to be 1.70 eV, the highest reported for a covalently linked porphyrin–fullerene dyad. Intramolecular photoinduced electron transfer leading to charge‐separated states of appreciable lifetimes in polar and nonpolar solvents has been established from studies involving femto‐ to nanosecond transient absorption techniques. The high energy stored in the form of charge‐separated states along with its persistence of about 50–60 ns makes this dyad a potential electron‐transporting catalyst to carry out energy‐demanding photochemical reactions. This type of high‐energy harvesting dyad is expected to open new research in the areas of artificial photosynthesis especially producing energy (potential) demanding light‐to‐fuel products.  相似文献   

17.
The D ‐manno‐tetrahydroimidazopyridine‐2‐phosphonate 11 was prepared via a high‐yielding Pd(PPh3)4‐catalysed diphenylphosphonylation of the manno‐iodoimidazole 12 , followed by transesterification to the diethyl phosphonate 14 and dealkylation, providing 11 in eight steps from the thionolactam 1 and in an overall yield of 15%. Alternatively, a more highly convergent synthesis based on the HgCl2/Et3N‐promoted condensation of the thionolactam 1 with the α‐aminophosphonate 24 in THF led to 11 in four steps and in the same overall yield. In the presence of HgCl2/Et3N, the thionolactam 1 reacted at 80° with 2‐methoxyethanol to provide 66% of a 64 : 36 mixture of the gluco‐ and manno‐iminoethers 29 / 30 . Performing the reaction at 22° yielded preferentially the gluco‐isomer 29 (86%, 84 : 16).  相似文献   

18.
Piperazine‐functionalized nickel ferrite (NiFe2O4) nanoparticles were synthesized as recoverable heterogeneous base catalysts using a routine method. The synthesized materials were characterized using various spectroscopic techniques such as infrared, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray, thermogravimetry analysis, and vibrating sample magnetometry. Catalytic efficiency was investigated in the synthesis of 2‐amino‐4H‐chromene derivatives via a one‐pot three component reaction of aldehyde and malononitrile with β or α‐naphthol/5‐methyle resorcinol under solvent‐free conditions with good to high yields. This method is operationally simple and has several advantages such as good to high yield, short reaction times, solvent‐free conditions, and easy synthesis. Moreover, the catalyst was recovered easily using an external magnet and reused three times without distinctive loss in catalytic activity.  相似文献   

19.
An efficient and rapid, solvent‐free, microwave‐accelerated, one‐pot, three‐component protocol for the synthesis of spirothiazolidin‐4‐ones from organic azides is reported for the first time via Staudinger/aza‐Wittig coupling/cyclization. The solvent‐free approach overcomes the limitations associated with the prevailing solution‐phase methodologies in the case of amines. In particular, its novelty is that it eradicates the vital limitation, i.e., the accumulation of H2O (by‐product), which is known to affect the yield and rate of the reaction, thus affording the spirothiazolidin‐4‐ones in short reaction times in excellent yields.  相似文献   

20.
Alkylbenzenes are synthesized for the first time from aliphatic hydrocarbons via an one pot, transition metal‐free coupling approach under basic conditions. The method consists of two steps: condensation of 2‐bromoprop‐2‐enyl‐ or 2‐propargylcyclohexanone with alcohols, amines, or amino alcohols, followed by base treatment (Scheme 1). Phenolic ethers and N‐phenylated polyalkyl aromatic compounds are shown to be in the scope of the demonstrated reaction (Table). The proposed mechanism suggests that the unsaturation in another part of the molecule (propargyl‐group equivalent) is transferred into the cyclohexane ring to yield a benzene ring through a series of prototropic shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号