首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Herein we have studied the cytotoxicity and quantitative structure–activity relationship (QSAR) of heterocyclic compounds containing cyclic urea and thiourea nuclei. A set of 22 hydantoin and thiohydantoin related heterocyclic compounds were investigated with respect to their LC50 values (Log of LC50) against brine shrimp lethality bioassay in order to derive the 2D-QSAR models using MLR, PLS and ANN methods. The best predictive models by MLR, PLS and ANN methods gave highly significant square correlation coefficient (R2) values of 0.83, 0.81 and 0.91 respectively. The model also exhibited good predictive power confirmed by the high value of cross validated correlation coefficient Q2 (0.74).  相似文献   

3.
Both the acute toxicity and chronic toxicity data on aquatic organisms are indispensable parameters in the ecological risk assessment priority chemical screening process (e.g. persistent, bioaccumulative and toxic chemicals). However, most of the present modelling actions are focused on developing predictive models for the acute toxicity of chemicals to aquatic organisms. As regards chronic aquatic toxicity, considerable work is needed. The major objective of the present study was to construct in silico models for predicting chronic toxicity data for Daphnia magna and Pseudokirchneriella subcapitata. In the modelling, a set of chronic toxicity data was collected for D. magna (21 days no observed effect concentration (NOEC)) and P. subcapitata (72 h NOEC), respectively. Then, binary classification models were developed for D. magna and P. subcapitata by employing the k-nearest neighbour method (k-NN). The model assessment results indicated that the obtained optimum models had high accuracy, sensitivity and specificity. The model application domain was characterized by the Euclidean distance-based method. In the future, the data gap for other chemicals within the application domain on their chronic toxicity for D. magna and P. subcapitata could be filled using the models developed here.  相似文献   

4.
5.
6.
Chronic pain syndromes are an important medical problem generated by various molecular, genetic, and pathophysiologic mechanisms. Back pain, neuropathic pain, and posttraumatic pain are the most important pathological processes associated with chronic pain in adults. Standard approaches to the treatment of them do not solve the problem of pain chronicity. This is the reason for the search for new personalized strategies for the prevention and treatment of chronic pain. The nitric oxide (NO) system can play one of the key roles in the development of peripheral pain and its chronicity. The purpose of the study is to review publications devoted to changes in the NO system in patients with peripheral chronical pain syndromes. We have carried out a search for the articles published in e-Library, PubMed, Oxford Press, Clinical Case, Springer, Elsevier, and Google Scholar databases. The search was carried out using keywords and their combinations. The role of NO and NO synthases (NOS) isoforms in peripheral pain development and chronicity was demonstrated primarily from animal models to humans. The most studied is the neuronal NOS (nNOS). The role of inducible NOS (iNOS) and endothelial NOS (eNOS) is still under investigation. Associative genetic studies have shown that single nucleotide variants (SNVs) of NOS1, NOS2, and NOS3 genes encoding nNOS, iNOS, and eNOS may be associated with acute and chronic peripheral pain. Prospects for the use of NOS inhibitors to modulate the effect of drugs used to treat peripheral pain syndrome are discussed. Associative genetic studies of SNVs NOS1, NOS2, and NOS3 genes are important for understanding genetic predictors of peripheral pain chronicity and development of new personalized pharmacotherapy strategies.  相似文献   

7.
Spread of multidrug‐resistant Escherichia coli clinical isolates is a main problem in the treatment of infectious diseases. Therefore, the modern scientific approaches in decision this problem require not only a prevention strategy, but also the development of new effective inhibitory compounds with selective molecular mechanism of action and low toxicity. The goal of this work is to identify more potent molecules active against E. coli strains by using machine learning, docking studies, synthesis and biological evaluation. A set of predictive QSAR models was built with two publicly available structurally diverse data sets, including recent data deposited in PubChem. The predictive ability of these models tested by a 5-fold cross-validation, resulted in balanced accuracies (BA) of 59–98% for the binary classifiers. Test sets validation showed that the models could be instrumental in predicting the antimicrobial activity with an accuracy (with BA = 60–99 %) within the applicability domain. The models were applied to screen a virtual chemical library, which was designed to have activity against resistant E. coli strains. The eight most promising compounds were identified, synthesized and tested. All of them showed the different levels of anti-E. coli activity and acute toxicity. The docking results have shown that all studied compounds are potential DNA gyrase inhibitors through the estimated interactions with amino acid residues and magnesium ion in the enzyme active center The synthesized compounds could be used as an interesting starting point for further development of drugs with low toxicity and selective molecular action mechanism against resistant E. coli strains. The developed QSAR models are freely available online at OCHEM http://ochem.eu/article/112525 and can be used to virtual screening of potential compounds with anti-E. coli activity.  相似文献   

8.
9.
10.
11.
Isoquercitrin is a flavonoid chemical compound that can be extracted from different plant species such as Mangifera indica (mango), Rheum nobile , Annona squamosal , Camellia sinensis (tea), and coriander ( Coriandrum sativum L.). It possesses various biological activities such as the prevention of thromboembolism and has anticancer, antiinflammatory, and antifatigue activities. Therefore, there is a critical need to elucidate and predict the qualitative and quantitative properties of this phytochemical compound using the high performance liquid chromatography (HPLC) technique. In this paper, three different nonlinear models including artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and support vector machine (SVM),in addition to a classical linear model [multilinear regression analysis (MLR)], were used for the prediction of the retention time (tR) and peak area (PA) for isoquercitrin using HPLC. The simulation uses concentration of the standard, composition of the mobile phases (MP-A and MP-B), and pH as the corresponding input variables. The performance efficiency of the models was evaluated using relative mean square error (RMSE), mean square error (MSE), determination coefficient (DC), and correlation coefficient (CC). The obtained results demonstrated that all four models are capable of predicting the qualitative and quantitative properties of the bioactive compound. A predictive comparison of the models showed that M3 had the highest prediction accuracy among the three models. Further evaluation of the results showed that ANFIS–M3 outperformed the other models and serves as the best model for the prediction of PA. On the other hand, ANN–M3proved its merit and emerged as the best model for tR simulation. The overall predictive accuracy of the best models showed them to be reliable tools for both qualitative and quantitative determination.  相似文献   

12.
13.
Quantitative structure-activity relationships (QSARs) based on the octanol/water partition coefficient were employed to predict acute toxicities of 36 substituted aromatic compounds and their mixtures. In this study, the model developed by Verhaar et al. was modified and used to calculate octanol/water partition coefficients of chemical mixtures. To validate the model, acute toxicities of these chemicals were measured to Vibrio fischeri in terms of EC50. The results indicated that the obtained QSAR models could be used to predict toxicities of samples consisting of these substituted aromatic compounds, individually or in combinations. The obtained equations were proved to be robust enough by using the leave-one-out test method. By classifying these chemicals into two groups, polar and non-polar, the toxicities of chemical mixtures within each group can be predicted accurately from their calculated partition coefficients.  相似文献   

14.
Prediction of solubility of active pharmaceutical ingredients (API) in different solvents is one of the main issue for crystallization process design. Experimental determination is not always possible because of the small amount of product available in the early stages of a drug development. Thus, one interesting perspective is the use of thermodynamic models, which are usually employed for predicting the activity coefficients in case of Vapour-Liquid equilibria or Liquid-Liquid equilibria (VLE or LLE). The choice of the best thermodynamic model for Solid-Liquid equilibria (SLE) is not an easy task as most of them are not meant particularly for this. In this paper, several models are tested for the solubility prediction of five drugs or drug-like molecules: Ibuprofen, Acetaminophen, Benzoic acid, Salicylic acid and 4-aminobenzoic acid, and another molecule, anthracene, a rather simple molecule. The performance of predictive (UNIFAC, UNIFAC mod., COSMO-SAC) and semi-predictive (NRTL-SAC) models are compared and discussed according to the functional groups of the molecules and the selected solvents. Moreover, the model errors caused by solid state property uncertainties are taken into account. These errors are indeed not negligible when accurate quantitative predictions want to be performed. It was found that UNIFAC models give the best results and could be an useful method for rapid solubility estimations of an API in various solvents. This model achieves the order of magnitude of the experimental solubility and can predict in which solvents the drug will be very soluble, soluble or not soluble. In addition, predictions obtained with NRTL-SAC model are also in good agreement with the experiments, but in that case the relevance of the results is strongly dependent on the model parameters regressed from solubility data in single and mixed solvents. However, this is a very interesting model for quick estimations like UNIFAC models. Finally, COSMO-SAC needs more developments to increase its accuracy especially when hydrogen bonding is involved. In that case, the predicted solubility is always overestimated from two to three orders of magnitude. Considering the use of the most accurate equilibrium equation involving the ΔCp term, no benefits were found for drug predictions as the models are still too inaccurate. However, in function of the molecules and their solid thermodynamic properties, the ΔCp term can be neglected and will not have a great impact on the results.  相似文献   

15.
Based on a set of six vector properties, the partial correlation diagram is calculated for a set of 28 S-alkylcysteine diazomethyl- and chloromethyl-ketone derivatives. Those with the greatest antileukemic activity in the same class correspond to high partial correlations. A periodic classification is performed based on information entropy. The first four characteristics denote the group, and the last two indicate the period. Compounds in the same period and, especially, group present similar properties. The most active substances are situated at the bottom right. Nine classes are distinguished. The principal component analysis of the homologous compounds shows five subclasses included in the periodic classification. Linear fits of both antileukemic activities and stability are good. They are in agreement with the principal component analysis. The variables that appear in the models are those that show positive loading in the principal component analysis. The most important properties to explain the antileukemic activities (50% inhibitory concentration Molt-3 T-lineage acute lymphoblastic leukemia minus the logarithm of 50% inhibitory concentration Nalm-6 B-lineage acute lymphoblastic leukemia and stability k) are ACD logD, surface tension and number of violations of Lipinski’s rule of five. After leave-m-out cross-validation, the most predictive model for cysteine diazomethyl- and chloromethyl-ketone derivatives is provided.  相似文献   

16.
A number of aromatic metabolites of tyrosine and phenylalanine have been investigated as new perspective markers of infectious complications in the critically ill patients of intensive care units (ICUs). The goal of our research was to build a multivariate model for predicting the outcome of critically ill patients regardless of the main pathology on the day of admission to the ICU. Eight aromatic metabolites were detected in serum using gas chromatography-mass spectrometry. The samples were obtained from the critically ill patients (n = 79), including survivors (n = 44) and non-survivors (n = 35), and healthy volunteers (n = 52). The concentrations of aromatic metabolites were statistically different in the critically ill patients and healthy volunteers. A univariate model for predicting the outcome of the critically ill patients was based on 3-(4-hydroxyphenyl)lactic acid (p-HPhLA). Two multivariate classification models were built based on aromatic metabolites using SIMCA method. The predictive models were compared with the clinical APACHE II scale using ROC analysis. For all of the predictive models the areas under the ROC curve were close to one. The aromatic metabolites (one or a number of them) can be used in clinical practice for the prognosis of the outcome of critically ill patients on the day of admission to the ICU.  相似文献   

17.
Retention prediction models for a group of pyrazines chromatographed under reversed-phase mode were developed using multiple linear regression (MLR) and artificial neural networks (ANNs). Using MLR, the retention of the analytes were satisfactorily described by a two-predictor model based on the logarithm of the partition coefficient of the analytes (log P) and the percentage of the organic modifier in the mobile phase (ACN or MeOH). ANN prediction models were also derived using the predictors derived from MLR as inputs and log k as outputs. The best network architecture was found to be 2-2-1 for both ACN and MeOH data sets. The optimized ANNs showed better predictive properties than the MLR models especially for the ACN data set. In the case of the MeOH data set, the MLR and ANN models have comparable predictive performance.  相似文献   

18.
The drugs used to treat cancer not only kill fast-growing cancer cells, but also kill or slow the growth of healthy cells, causing systemic toxicities that lead to altered functioning of normal cells. Most chemotherapeutic agents have serious toxicities associated with their use, necessitating extreme caution and attention. There is a growing interest in herbal remedies because of their pharmacological activities, minimal side effects, and low cost. Thymoquinone, a major component of the volatile oil of Nigella sativa Linn, also known as black cumin or black seeds, is commonly used in Middle Eastern countries as a condiment. It is also utilized for medicinal purposes and possesses antidiabetic, anti-cancer, anti-inflammatory, hepatoprotective, anti-microbial, immunomodulatory, and antioxidant properties. This review attempts to compile the published literature demonstrating thymoquinone’s protective effect against chemotherapeutic drug-induced toxicities.  相似文献   

19.
A generalized NRTL model was previously proposed for the modeling of non ideal systems and was extended to the prediction of phase equilibria under pressure according to the cubic NRTL-PR EoS. In this work, the model is reformulated with a predictive kij temperature and composition dependent mixing rule and new interaction parameters are proposed between permanent gases, ethane and nitrogen with hydrocarbons, ethane with water and ethylene glycol. Results obtained for excess enthalpies, liquid-vapor and liquid-liquid equilibria are compared with those provided by the literature models, such as VTPR, PPR78, CPA and SRKm. A wide variety of mixtures formed by very asymmetric compounds, such as hydrocarbons, water and ethylene glycols are considered and special attention is paid to the evolution of kij with respect to mole fractions and temperature.  相似文献   

20.
Ultraviolet light from the sun can produce long-term skin damage and cancer. The use of sunscreen products containing one or more UV filters is encouraged by health professionals for preventing the damaging effects resulting from sun exposure. However, recently there have been increasing concerns about the use of sunscreens and their safety for both humans and the environment. The sunscreen manufacturers should take the initiative in testing of the products for possible short-term skin toxicity and long-term health effects that might occur due to the absorption of UV filters through the skin. Published studies have shed light on this topic by investigating the harmful effects of UV filters such as oxybenzone on the hormone system of aquatic animals and humans. Currently, in vitro and in vivo animal models are being used to determine the mechanistic and cellular effects these products produce. With growing awareness of adverse effects posed by UV filters on the environment and exposed organisms, several jurisdictions are prohibiting their use in sunscreens. To our knowledge, very few reviews summarized the potential toxicities associated with UV filters. Therefore, the current reported findings are rather controversial due to the lack of nonclinical safety assessment data to determine the clinical significance of such exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号