首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Two approaches for the conversion of d‐ glucose to (?) ‐neplanocin A ( 2 ), both based on the zirconocene‐promoted ring contraction of a vinyl‐substituted pyranoside, are herein evaluated (Scheme 1). In the first pathway (Scheme 2), the substrate possesses the α‐d‐ allo configuration (see 6 ) such that ultimate introduction of the nucleobase would require only an inversion of configuration. However, this precursor proved unresponsive to Cp2Zr (=[ZrCl2(Cp)2]), an end result believed to be a consequence of substantive nonbonded steric effects operating in a key intermediate (Scheme 5). In contrast, the C(2) epimer (see 7 ) experienced the desired metal‐promoted conversion to an enantiomerically pure polyfunctional cyclopentane (see 5 in Scheme 3). The substituents in this product are arrayed in a manner such that conversion to the target nucleoside can be conveniently achieved by a double‐inversion sequence (Scheme 4). Recourse to palladium(0)‐catalyzed allylic alkylation did not provide an alternate means of generating 2 .  相似文献   

2.
《化学:亚洲杂志》2017,12(24):3195-3202
Herein we report the unique conformations adopted by linear and cyclic tetrapeptides (CTPs) containing 2‐aminobenzoic acid (2‐Abz) in solution and as single crystals. The crystal structure of the linear tetrapeptide H2N‐d ‐Leu‐d ‐Phe‐2‐Abz‐d ‐Ala‐COOH ( 1 ) reveals a novel planar peptidomimetic β‐turn stabilized by three hydrogen bonds and is in agreement with its NMR structure in solution. While CTPs are often synthetically inaccessible or cyclize in poor yield, both 1 and its N ‐Me‐d ‐Phe analogue ( 2 ) adopt pseudo‐cyclic frameworks enabling near quantitative conversion to the corresponding CTPs 3 and 4 . The crystal structure of the N ‐methylated peptide ( 4 ) is the first reported for a CTP containing 2‐Abz and reveals a distinctly planar 13‐membered ring, which is also evident in solution. The N ‐methylation of d ‐Phe results in a peptide bond inversion compared to the conformation of 3 in solution.  相似文献   

3.
Porcine pancreas lipase‐catalyzed hydrolysis of symmetrical 2‐(ethoxycarbonyl)propane‐1,3‐diyl dihexanoate, under the modified conditions of the Seebach protocol, afforded a desymmetrized monohexanoate in 40–51% yield with 91–94% ee, even in a gram‐scale reaction. The absolute configuration of a half‐hydrolyzed (?)‐product was determined to be (R) by conversion to a known 2‐methylpropane‐1,3‐diol derivative. Samarium iodide‐induced radical cyclization of 2‐oxo‐3‐phenylethylamine with a C4 unit on the N‐atom, derived from the racemic monohexanoate, afforded a 3‐phenylpiperidine derivative as a model construction of the A–D ring system of lysergic acid.  相似文献   

4.
The title compounds, benzyl 4‐(3‐chloro‐2‐fluorophenyl)‐2‐methyl‐5‐oxo‐4,5,6,7‐tetrahydro‐1H‐cyclopenta[b]pyridine‐3‐carboxylate, C23H19ClFNO3, (I), and 3‐pyridylmethyl 4‐[2‐fluoro‐3‐(trifluoromethyl)phenyl]‐2,6,6‐trimethyl‐5‐oxo‐1,4,5,6,7,8‐hexahydroquinoline‐3‐carboxylate, C26H24F4N2O3, (II), belong to a class of 1,4‐dihydropyridines whose members sometimes display calcium modulatory properties. The 1,4‐dihydropyridine ring in each structure has a shallower than usual shallow‐boat conformation and is nearly planar in (I). In each structure, the halogen‐substituted benzene ring is oriented such that the halogen substituents are in a synperiplanar orientation with respect to the 1,4‐dihydropyridine ring plane. The oxocyclopentene ring in (I) is planar, while the oxocyclohexene ring in (II) has a half‐chair conformation, which is less commonly observed than the envelope conformation usually found in related compounds. In (I), the frequently observed intermolecular N—H...O hydrogen bond between the amine group and the carbonyl O atom of the oxocyclopentene ring of a neighbouring molecule links the molecules into extended chains; there are no other significant intermolecular interactions. By contrast, the amine group in (II) forms an N—H...N hydrogen bond with the pyridine ring N atom of a neighbouring molecule. Additional C—H...O interactions complete a two‐dimensional hydrogen‐bonded network. The halogen‐substituted benzene ring has a weak intramolecular π–π interaction with the pyridine ring. A stronger π–π interaction occurs between the 1,4‐dihydropyridine rings of centrosymmetrically related molecules.  相似文献   

5.
The crystal structures of seven N‐aryltropan‐3‐one (=8‐aryl‐8‐azabicyclo[3.2.1]octan‐3‐one) derivatives 1T1, 2T1, 2T2, 3T2, 5T2, 2T3 , and 3T3 are presented (Fig. 2 and Tables 15) and discussed together with the derivatives 1T2 and 4T2 published previously. The piperidine ring adopts a chair conformation. In all structures, the aryl group is in the axial position, with the plane through the aryl C‐atoms nearly perpendicular to the mirror plane of the piperidine ring. The through‐bond interaction between the piperidine ring N‐atom (one‐electron donor) and the substituted exocyclic C?C bond (acceptor) not only elongates the central C? C bonds of the piperidine ring but also increases the pyrimidalization at C(4) of the piperidine ring. Flattening of the C(2)–C(6) part of the piperidine ring decreases the through‐bond interaction.  相似文献   

6.
The ring contraction of N‐acetyl‐2‐aryl‐1,2,3,4‐tetrahydro‐4‐quinolones 1ad with thallium(III) nitrate in trimethyl orthoformate afforded stereoselectively trans methyl N‐acetyl‐2‐aryl‐2,3‐dihydroindol‐3‐carboxylates 5ad by oxidative rearrangement of aryl ring A.  相似文献   

7.
The reaction between 4‐(4‐methyl­phenyl)­but‐3‐en‐2‐one and amino­guanidine produced an unexpected product of formula C12H15N3O, consisting of a carbox­amide moiety joined to a substituted pyrazoline ring at one of the N atoms. The pyrazoline ring adopts a flat‐envelope conformation and the substituted phenyl ring is oriented almost perpendicular to the heterocycle. The carbonyl O atom has partial anionic character as a result of the transfer of π density from the two adjacent sp2 N atoms and is involved in an intermolecular hydrogen bond with the amide group.  相似文献   

8.
The three pyran structures 6‐methylamino‐5‐nitro‐2,4‐diphenyl‐4H‐pyran‐3‐carbonitrile, C19H15N3O3, (I), 4‐(3‐fluorophenyl)‐6‐methylamino‐5‐nitro‐2‐phenyl‐4H‐pyran‐3‐carbonitrile, C19H14FN3O3, (II), and 4‐(4‐chlorophenyl)‐6‐methylamino‐5‐nitro‐2‐phenyl‐4H‐pyran‐3‐carbonitrile, C19H14ClN3O3, (III), differ in the nature of the aryl group at the 4‐position. The heterocyclic ring in all three structures adopts a flattened boat conformation. The dihedral angle between the pseudo‐axial phenyl substituent and the flat part of the pyran ring is 89.97 (1)° in (I), 80.11 (1)° in (II) and 87.77 (1)° in (III). In all three crystal structures, a strong intramolecular N—H...O hydrogen bond links the flat conjugated H—N—C=C—N—O fragment into a six‐membered ring. In (II), molecules are linked into dimeric aggregates by N—H... O(nitro) hydrogen bonds, generating an R22(12) graph‐set motif. In (III), intermolecular N—H...N and C—H...N hydrogen bonds link the molecules into a linear chain pattern generating C(8) and C(9) graph‐set motifs, respectively.  相似文献   

9.
The two title compounds, 2‐({(1Z)‐[4‐(di­methyl­amino)phenyl]methylene}amino)‐4,5‐dimethyl‐N‐(2‐methylphenyl)thiophene‐3‐carboxamide, C23H25N3OS, (I), and 2‐({(1E)‐[4‐(dimethylamino)phenyl]methylene}amino)‐N‐(4‐methylphenyl)‐4,5,6,7‐tetrahydro‐1‐benzothiophene‐3‐carboxamide,C25H27N3OS, (II), show antibacterial and antifungal activities. The asymmetric unit of (II) contains two crystallographically independent mol­ecules. The o‐toluidine ring in (I) lies gauche with respect to the thio­phene ring. In (II), the p‐toluidine ring is coplanar with the thio­phene ring in one mol­ecule, but is tilted from it in the other mol­ecule. Neither structure exhibits any significant intermolecular interactions, but in both, an intramolecular N—H⋯N hydrogen bond forms a pseudo‐six‐membered ring, thus locking the molecular conformation and removing conformational flexibility.  相似文献   

10.
Two series of a total of ten cocrystals involving 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine with various carboxylic acids have been prepared and characterized by single‐crystal X‐ray diffraction. The pyrimidine unit used for the cocrystals offers two ring N atoms (positions N1 and N3) as proton‐accepting sites. Depending upon the site of protonation, two types of cations are possible [Rajam et al. (2017). Acta Cryst. C 73 , 862–868]. In a parallel arrangement, two series of cocrystals are possible depending upon the hydrogen bonding of the carboxyl group with position N1 or N3. In one series of cocrystals, i.e. 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–3‐bromothiophene‐2‐carboxylic acid (1/1), 1 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–5‐chlorothiophene‐2‐carboxylic acid (1/1), 2 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2,4‐dichlorobenzoic acid (1/1), 3 , and 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2‐aminobenzoic acid (1/1), 4 , the carboxyl hydroxy group (–OH) is hydrogen bonded to position N1 (O—H…N1) of the corresponding pyrimidine unit (single point supramolecular synthon). The inversion‐related stacked pyrimidines are doubly bridged by the carboxyl groups via N—H…O and O—H…N hydrogen bonds to form a large cage‐like tetrameric unit with an R42(20) graph‐set ring motif. These tetrameric units are further connected via base pairing through a pair of N—H…N hydrogen bonds, generating R22(8) motifs (supramolecular homosynthon). In the other series of cocrystals, i.e. 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–5‐methylthiophene‐2‐carboxylic acid (1/1), 5 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–benzoic acid (1/1), 6 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–2‐methylbenzoic acid (1/1), 7 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–3‐methylbenzoic acid (1/1), 8 , 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–4‐methylbenzoic acid (1/1), 9 , and 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine–4‐aminobenzoic acid (1/1), 10 , the carboxyl group interacts with position N3 and the adjacent 4‐amino group of the corresponding pyrimidine ring via O—H…N and N—H…O hydrogen bonds to generate the robust R22(8) supramolecular heterosynthon. These heterosynthons are further connected by N—H…N hydrogen‐bond interactions in a linear fashion to form a chain‐like arrangement. In cocrystal 1 , a Br…Br halogen bond is present, in cocrystals 2 and 3 , Cl…Cl halogen bonds are present, and in cocrystals 5 , 6 and 7 , Cl…O halogen bonds are present. In all of the ten cocrystals, π–π stacking interactions are observed.  相似文献   

11.
3-Aryl-4-amino-δ2-1,2,4-oxadiazolines 3 and their N-chloroacetyl derivatives 4 , upon treatment with chloroacetic anhydride in refluxing toluene, afford 2-chloromethyl-5-aryl-1,3,4-oxadiazoles 5 , suggesting the conversion sequence 3 → 4 → 5 . The generality of the new ring transformation 4 → 5 is supported similar conversion of other 4-(acylamino)-1,2,4-oxadiazolines 8 to 1,3,4-oxadiazoles 9 .  相似文献   

12.
This study sheds light on the cleavage and reorganization of C(sp3)? H and C?N bonds of carbodiimides in a three‐component reaction of terminal alkynes, sulfur, and carbodiimides by a combination of methods including 1) isolation and X‐ray analysis of six‐membered‐ring lithium species 2‐S , 2) trapping of the oxygen‐analogues ( B‐O and D‐O ) of both four‐membered‐ring intermediate B‐S and ring‐opening intermediate D‐S , 3) deuterium labeling studies, and 4) theoretical studies. These results show that 1) the reaction rate‐determining step is [2+2] cycloaddition, 2) the C?N bond cleavage takes place before C(sp3)? H bond cleavage, 3) the hydrogen attached to C6 in 2‐S originates from the carbodiimide, and 4) three types of new aza‐heterocycles, such as 1,2‐dihydrothiopyrimidines, N‐acyl 2,3‐dihydropyrimidinthiones, and 1,2‐dihydropyrimidinamino acids are constructed efficiently based on 2‐S . All results strongly support the idea that the reaction proceeds through [2+2] cycloaddition/4π electrocyclic ring‐opening/1,5‐H shift/6π electrocyclic ring‐closing as key steps. The research strategy on the synthesis, isolation, and reactivity investigation of important intermediates in metal‐mediated reactions not only helps achieve an in‐depth understanding of reaction mechanisms but also leads to the discovery of new synthetically useful reactions based on the important intermediates.  相似文献   

13.
Synthesis and Reactions of 8-membered Heterocycles from 3-Dimethylamino-2,2-dimethyl-2H-azirine and Saccharin or Phthalimide 3-Dimethylamino-2,2-dimethyl-2H-azirine ( 1 ) reacts at 0-20° with the NH-acidic compounds saccharin ( 2 ) and phthalimide ( 8 ) to give the 8-membered heterocycles 3-dimethylamino-4,4-dimethyl-5,6-dihydro-4 H-1,2,5-benzothiadiazocin-6-one-1,1-dioxide ( 3a ) and 4-dimethylamino-3,3-dimethyl-1,2,3,6-tetrahydro-2,5-benzodiazocin-1,6-dione ( 9 ), respectively. The structure of 3a has been established by X-ray (chap. 2). A possible mechanism for the formation of 3a and 9 is given in Schemes 1 and 4. Reduction of 3a with sodium borohydride yields the 2-sulfamoylbenzamide derivative 4 (Scheme 2); in methanolic solution 3a undergoes a rearrangement to give the methyl 2-sulfamoyl-benzoate 5 . The mechanism for this reaction as suggested in Scheme 2 involves a ring contraction/ring opening sequence. Again a ring contraction is postulated to explain the formation of the 4H-imidazole derivative 7 during thermolysis of 3a at 180° (Scheme 3). The 2,5-benzodiazocine derivative 9 rearranges in alcoholic solvents to 2-(5′-dimethylamino-4′,4′-dimethyl-4′H-imidazol-2′-yl) benzoates ( 10 , 11 ), in water to the corresponding benzoic acid 12 , and in alcoholic solutions containing dimethylamine or pyrrolidine to the benzamides 13 and 14 , respectively (Scheme 5). The reaction with amines takes place only in very polar solvents like alcohols or formamide, but not in acetonitrile. Possible mechanisms of these rearrangements are given in Scheme 5. Sodium borohydride reduction of 9 in 2-propanol yields 2-(5′-dimethylamino-4′,4′-dimethyl-4′H-imidazol-2′-yl)benzyl alcohol ( 15 , Scheme 6) which is easily converted to the O-acetate 16 . Hydrolysis of 15 with 3N HCl at 50° leads to an imidazolinone derivative 17a or 17b , whereas hydrolysis with 1N NaOH yields a mixture of phthalide ( 18 ) and 2-hydroxymethyl-benzoic acid ( 19 , Scheme 6). The zwitterionic compound 20 (Scheme 7) results from the hydrolysis of the phthalimide-adduct 9 or the esters 11 and 12 . Interestingly, compound 9 is thermally converted to the amide 13 and N-(1′-carbamoyl-1′-methylethyl)phthalimide ( 21 , Scheme 7) whose structure has been established by an independent synthesis starting with phthalic anhydride and 2-amino-isobutyric acid. However, the reaction mechanism is not clear at this stage.  相似文献   

14.
The cyclization mechanism for the title compound ( 2 ) reacting with one‐carbon fragment reagents or nitrous acid to afford heterobicyclic compounds 6‐amino‐3‐substituted‐1,2,4‐triazolo[3,4‐f][1,2,4]triazin‐8(7H)‐ones ( 3a~d ) or 6‐amino‐1,2,3,4‐tetrazolo[5,1‐f][1,2,4]triazin‐8(7H)‐one ( 4 ), respectively, is explored in this paper. When 3‐amino‐2‐benzyl‐6‐hydrazino‐1,2,4‐triazin‐5(2H)‐one ( 10 ), the N‐2 benzylated derivative of 2 , is treated under the same conditions, ring cyclization does not occur; instead, 3‐amino‐2‐benzyl‐6‐substituted‐1,2,4‐triazin‐5(2H)‐ones ( 11,12,14 ) and 2‐N‐(2‐amino‐1‐benzyl‐4‐oxo‐1,2,4‐triazin‐5‐yl)semicarbazide ( 13 ) are formed. Alternatively, when 3‐amino‐6‐hydrazino‐2‐[(2‐hydroxyethoxy)methyl]‐1,2,4‐triazin‐5(2H)‐one ( 16 ), a compound bearing the 2‐[(2‐hydroxyethoxy)methyl] side‐chain at N‐2 of 2 by an N? C? O bond, reacts with glacial acetic acid or nitrous acid, the side‐chain is cleaved through acidolysis to affford the ring‐closed compound 6‐amino‐3‐methyl‐1,2,4‐triazolo[3,4‐f][1,2,4]triazin‐8(7H)‐one ( 3b ) or compound 4 , respectively. From these results, we suggest a cyclization mechanism that the ring cyclization is dependent on the aromatization of the 1,2,4‐triazine ring, which influence the reactivity and reaction behavior of the π‐deficient 1,2,4‐triazine.  相似文献   

15.
Some 1,4‐phenylene‐bis[1,2,4]oxadiazolo‐[5,4‐d][1,5]benzothiazepine derivatives ( 4a , 4b , 4c ) were synthesized by 1,3‐dipolar cycloaddition reaction of benzohydroximinoyl chloride with 1,4‐phenylene‐bis(4‐aryl)‐2,3‐dihydro[1,5]benzothiazepine ( 2a , 2b , 2c ); meanwhile, compounds 2a , 2b , 2c also occurred ring contraction under acylating condition to obtain bis[2‐aryl‐2′‐(β‐1,4‐phenylenevinyl)‐3‐acetyl]‐2,3‐dihydro[1,5]benzothiazoles ( 3a , 3b , 3c ). The structures of some novel compounds were confirmed by IR, 1H‐NMR, elemental, and X‐ray crystallographic analysis.  相似文献   

16.
Ring Expansion during the Reaction of a 1,3-Cyclohexanedione with Diphenylcyclopropenone The reaction of 5,5-dimethyl-1,3-cyclohexanedione ( 1 ) in form of its Na-salt with diphenylcyclopropenone ( 2 ) in DMF yielded the bicyclic triketone 3 (58 %), the structure of which was deduced as an enolizeable bicyclo[5.2.0]nonane-β-diketone from spectral data and from the following reactions: hydrolysis or methanolysis of 3 cleaved the β-dicarbonyl moiety, thereby opening the 4-membered ring to yield the keto acid 9 or its methyl ester 10 . Methylation of 3 afforded the two enol ethers 4 and 5 . The ether 5 readily underwent a thermal electrocyclic ring opening to the monocyclic enol ether 8 , whereas the ether 4 was thermally stable. The same electrocylic ring opening (in boiling benzene) converted 3 (probably via 3b ) to the monocyclic triketone 7 , which was also the hydrolysis product of the ring-opened enol ether 8 . By heating 3 in DMF/H2O, a partial (56 %) conversion to the lactone 6 took place. The tricyclic intermediate 11 was found useful to rationalize the ring expansion during the formation of 3 from 1 and 2 as well as the corresponding ring contraction during the conversion of 3 into 6 .  相似文献   

17.
Two isomeric trans‐4‐amino­azoxy­benzenes, trans‐1‐(4‐amino­phenyl)‐2‐phenyl­diazene 2‐oxide (α, C12H11N3O) and trans‐2‐(4‐amino­phenyl)‐1‐phenyl­diazene 2‐oxide (β, C12H11N3O), have been characterized by X‐ray diffraction. The α isomer is almost planar, having torsion angles along the Caryl—N bonds of only 4.9 (2) and 8.0 (2)°. The relatively short Caryl—N bond to the non‐oxidized site of the azoxy group [1.401 (2) Å], together with the significant quinoid deformation of the respective phenyl ring, is evidence of conjugation between the aromatic sextet and the π‐electron system of the azoxy group. The geometry of the β isomer is different. The non‐substituted phenyl ring is twisted with respect to the NNO plane by ca 50°, whereas the substituted ring is almost coplanar with the NNO plane. The non‐oxidized N atom in the β isomer has increased sp3 character, which leads to a decrease in the N—N—C bond angle to 116.8 (2)°, in contrast with 120.9 (1)° for the α isomer. The deformation of the C—C—C angles (1–2°) in the phenyl rings at the substitution positions is evidence of the different character of the oxidized and non‐oxidized N atoms of the azoxy group. In the crystal structures, mol­ecules of both isomers are arranged in chains connected by weak N—H?O (α and β) and N—H?N (β) hydrogen bonds.  相似文献   

18.
Surprising Reaction of 5‐(Phenylthio)‐ and 5‐(Methylthio)pent‐2‐en‐4‐inal with HCl Contrary to expectations (Scheme 1), 5‐(phenylthio)‐( 1a ) as well as 5‐(methylthio)pent‐2‐en‐4‐inal ( 1b ) react with a slight excess of HCl to give 2‐[bis(phenylthio)methyl]furan ( 17a , 77% yield) and 2‐[bis(methylthio)methyl]furan ( 17b , 61% yield), respectively. Structures 17a and 17b are supported by the results of an X‐ray crystal‐structure analysis, by spectroscopic data in comparison to those of model compounds, and by synthesis of 17a . This surprising reaction is tentatively explained by a mechanism (Scheme 4), including a special pyran→furan ring‐contraction sequence, which is in agreement with a labelling experiment.  相似文献   

19.
Two new salts, namely 2,6‐diamino‐4‐chloropyrimidinium 2‐carboxy‐3‐nitrobenzoate, C4H6ClN4+·C8H4NO6, (I), and 2,6‐diamino‐4‐chloropyrimidinium p‐toluenesulfonate monohydrate, C4H6ClN4+·C7H7O3S·H2O, (II), have been synthesized and characterized by single‐crystal X‐ray diffraction. In both crystal structures, the N atom in the 1‐position of the pyrimidine ring is protonated. In salt (I), the protonated N atom and the amino group of the pyrimidinium cation interact with the carboxylate group of the anion through N—H…O hydrogen bonds to form a heterosynthon with an R 22(8) ring motif. In hydrated salt (II), the presence of the water molecule prevents the formation of the familiar R 22(8) ring motif. Instead, an expanded ring [i.e. R 32(8)] is formed involving the sulfonate group, the pyrimidinium cation and the water molecule. Both salts form a supramolecular homosynthon [R 22(8) ring motif] through N—H…N hydrogen bonds. The molecular structures are further stabilized by π–π stacking, and C=O…π, C—H…O and C—H…Cl interactions.  相似文献   

20.
The reaction of 4‐aryl‐6‐bromomethyl‐5‐nitro‐3,4‐dihydropyrimidin‐2(1H)‐ones, containing three possible combinations of substituted and unsubstituted nitrogen atoms with anilines depending on the conditions leads to the products of ring contraction of the pyrimidinone ring into an imidazolone, as well as to the formation of 7‐aryl‐6,7‐dihydroisoxazolo[4,3‐d]pyrimidin‐5(4H)‐one derivatives, and in some cases to the 5‐aminopyrimidinones. The mechanisms of these unusual ring transformations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号