首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the hexitol nucleic acid (HNA) h(GCGCTTTTGCGC) was determined by NMR spectroscopy. This unnatural nucleic acid was developed as a mimic for A‐RNA. In solution, the studied sequence is forming a symmetric double‐stranded structure with four central consecutive T⋅T wobble pairs flanked by G⋅C Watson‐Crick base pairs. The stem regions adopt an A‐type helical structure. Discrete changes in backbone angles are altering the course of the helix axis in the internal loop region. Two H‐bonds are formed in each wobble pair, and base stacking is preserved in the duplex, explaining the stability of the duplex. This structure elucidation provides information about the influence of a (T)4 fragment on local helix geometries as well as on the nature of the T⋅T mismatch base pairing in a TTTT tract.  相似文献   

2.
Circularly polarized luminescence (CPL) was observed in pyrene zipper arrays helically arranged on an RNA duplex. Hybridization of complementary RNA strands having multiple (two to five) 2′‐O‐pyrenylmethyl modified nucleosides affords an RNA duplex with normal thermal stability. The pyrene fluorophores are assembled like a zipper in a well‐defined helical manner along the axis of RNA duplex, which, upon 350 nm UV illumination, resulted in CPL emission with pyrene excimer formation. CPL (glum) levels observed for the pyrene arrays in dilute aqueous solution were +2×10?2–+3.5×10?2, which are comparable with |glum| for chiral organic molecules and related systems. The positive CPL signals are consistent with a right‐handed helical structure. Temperature dependence on CPL emission indicates that the stable rigid RNA structure is responsible for the strong CPL signals. The single pyrene‐modified RNA duplex did not show any CPL signal.  相似文献   

3.
Disaccharide nucleosides with 2′‐O‐(D ‐arabinofuranosyl), 2′‐O‐(L ‐arabinofuranosyl), 2′‐O‐(D ‐ribopyranosyl), 2′‐O‐(D ‐erythrofuranosyl), and 2′‐O‐(5‐azido‐5‐deoxy‐D ‐ribofuranosyl) substituents were synthesized. These modified nucleosides were incorporated into oligonucleotides (see Table). Single substitution resulted in a ΔTm of +0.5 to −1.4° for DNA/RNA and a ΔTm of −0.8 to −4.7° for DNA/DNA duplexes. These disaccharide nucleosides can be well accommodated in RNA/DNA duplexes, and the presence of a NH2−C(5″) group has a beneficial effect on duplex stability.  相似文献   

4.
Oligonucleotides incorporating the regioisomeric 4‐nitroindazole N1‐ and N2‐(2′‐deoxy‐β‐D ‐ribofuranosides) 7 and 8 were synthesized and their base‐pairing properties investigated. For solid‐phase synthesis, the phosphoramidites 11 and 12 were prepared. Oligonucleotides containing the building block 7 or 8 show ambiguous base pairing. Duplexes have similar Tm values when the modified bases are positioned opposite to the four canonical DNA constituents. The glycosylation position of the regioisomeric 4‐nitroindazole nucleosides has very little influence on the duplex stability.  相似文献   

5.
Dipeptide‐conjugated nucleosides were efficiently synthesized from the intermediates of 3′‐amino‐3′‐deoxy‐nucleosides by using the solid‐phase synthetic strategy with HOBt/HBTU (1‐hydroxy‐1H‐benzotriazole/2‐(1H‐benzotriazol‐1‐yl)‐1,1,3,3‐tetramethyluronium hexafluoroborate) as the coupling reagents (Schemes 1–3). CD Spectra and thermal melting studies showed that the synthesized hydrophobic dipeptide? thymidine and ? uridine derivatives 8a – 8d, 13a – d , and 18 had a mild affinity with the polyA?polyU duplex and could induce the change of RNA conformation. The results also implied that the interaction of conjugates with RNA might be related to the sugar pucker conformation of the nucleoside.  相似文献   

6.
The self‐complementary tetrameric propargyl triols 8, 14, 18 , and 21 were synthesized to investigate the duplex formation of self‐complementary, ethynylene‐linked UUAA, AAUU, UAUA, and AUAU analogues with integrated bases and backbone (ONIBs). The linear synthesis is based on repetitive Sonogashira couplings and C‐desilylations (34–72% yield), starting from the monomeric propargyl alcohols 9 and 15 and the iodinated nucleosides 3, 7, 11 , and 13 . Strongly persistent intramolecular H‐bonds from the propargylic OH groups to N(3) of the adenosine units prevent the gg‐type orientation of the ethynyl groups at C(5′). As such, an orientation is required for the formation of cyclic duplexes, this H‐bond prevents the formation of duplexes connected by all four base pairs. However, the central units of the UAUA and AAUU analogues 18 and 14 associate in CDCl3/(D6)DMSO 10 : 1 to form a cyclic duplex characterized by reverse Hoogsteen base pairing. The UUAA tetramer 8 forms a cyclic UU homoduplex, while the AUAU tetramer 21 forms only linear associates. Duplex formation of the O‐silylated UUAA and AAUU tetramers is no longer prevented. The self‐complementary UUAA tetramer 22 forms Watson–Crick‐ and Hoogsteen‐type base‐paired cyclic duplexes more readily than the sequence‐isomeric AAUU tetramer 23 , further illustrating the sequence selectivity of duplex formation.  相似文献   

7.
We report the synthesis of 1'-deoxy-1'-(benzimidazol-1-yl)-beta-D-ribofuranose 7 and 1'-deoxy-1'-phenyl-beta-D-ribofuranose 2. With these two ribonucleoside analogues we have a set of nine different RNA building blocks in hand, which are isostere to the natural bases. Now it is possible to investigate their duplex stabilizing forces. These forces are hydrogen bonds, base stacking, and solvation. The phosphoramidites of all building blocks were incorporated into a 12mer RNA, and the resulting RNA duplexes were investigated by UV- and CD-spectroscopy. We found that some of the RNA analogues are universal bases. The best universal bases with the lowest destabilization and the smallest discrimination between the natural bases are 1 (B) and 9 (E). On the basis of UV measurements we determined the melting points and the thermodynamic data. We were able to show that there are no hydrogen bonds between the natural bases and the RNA analogues. From thermodynamic data we calculated the contributions for base stacking and solvation of all modified building blocks. Comparison of calculated and measured data of double modified base pairs in 12mer RNA duplexes showed a further duplex stabilizing force in base pairs containing fluorine atoms at the Watson-Crick binding site. This stabilizing force can be defined as C-F.H-C hydrogen bond as is observed in crystal structures of 1'-deoxy-1'-(4-fluorophenyl)-beta-D-ribofuranose.  相似文献   

8.
Recent experimental studies on the Watson–Crick type base pairing of triazine and aminopyrimidine derivatives suggest that acid/base properties of the constituent bases might be related to the duplex stabilities measured in solution. Herein we use high‐level quantum chemical calculations and molecular dynamics simulations to evaluate the base pairing and stacking interactions of seven selected base pairs, which are common in that they are stabilized by two N? H???O hydrogen bonds separated by one N? H???N hydrogen bond. We show that neither the base pairing nor the base stacking interaction energies correlate with the reported pKa data of the bases and the melting points of the duplexes. This suggests that the experimentally observed correlation between the melting point data of the duplexes and the pKa values of the constituent bases is not rooted in the intrinsic base pairing and stacking properties. The physical chemistry origin of the observed experimental correlation thus remains unexplained and requires further investigations. In addition, since our calculations are carried out with extrapolation to the complete basis set of atomic orbitals and with inclusion of higher electron correlation effects, they provide reference data for stacking and base pairing energies of non‐natural bases.  相似文献   

9.
The solution structure of the duplex formed by α‐L ‐arabinopyranosyl‐(4′→2′)‐(CGAATTCG) was studied by NMR. The resonances of all H‐, P‐ and most C‐atoms could be assigned. Dihedral angles and distance estimates derived from coupling constants and NOESY spectra were used as restraints in a simulated annealing calculation, which generated a well‐defined bundle of structures for the six innermost nucleotide pairs. The essential features of the resulting structures are an antiparallel, Watson Crick‐paired duplex with a strong backbone inclination of ca. −50° and, therefore, predominant interstrand base stacking. The very similar inclination and rise parameters of arabinopyranosyl‐(4′→2′)‐oligonucleotides and p‐RNA explain why these two pentapyranosyl isomers are able to cross‐pair.  相似文献   

10.
The eight (arylalkyl)‐modified phosphoramidites (=(arylalkyl)phosphonamidites) 1 – 8 (Fig. 2) were synthesized (Schemes 13) and incorporated at different positions into 2′‐deoxyoligonucleotides. The [P(R)]‐ and [P(S)]‐diastereoisomers of the hexanucleotides 32 – 39 (Table 1) and of the dodecanucleotides 41 – 45 (Table 2) obtained were separated by means of reversed‐phase HPLC. UV, CD, and fluorescence spectroscopy were used to investigate the thermal stability (Tm) and the structural changes of their DNA duplexes with 5′‐d(CGCGCG)‐3′ and 5′‐d(ATGATTGACCTG)‐3′, respectively. The Tm values significantly depend on the place of modification (Table 2). A dangling‐end effect is observed when the [3‐(anthracen‐9‐yl)propyl]‐modified 8 is attached at the 5′‐terminus (see duplex with 45c ). In the case of the incorporation of aromatic moieties tethered via a methylene linker to the P‐atom (benzyl‐ and (naphthalen‐1‐ylmethyl)‐modified 1 and 6 , resp.), the duplexes with the [P(R)]‐oligonucleotides are more stable than those with the [P(S)]‐isomers, whereas in the case of longer alkyl chains at the P‐atom (see 2 – 5 ), the Tm values show the reverse tendency. The observed Tm differences are assigned to changes in base stacking (Figs. 6 and 7).  相似文献   

11.
The solution structure of the self‐complementary deca‐ribonucleotide 5′‐r(GCGA*AUUCGC)‐3′ containing 9‐[2‐O‐(β‐D ‐ribofuranosyl)‐β‐D ‐ribofuranosyl]adenine (A*), a modified nucleotide that occurs in lower eukaryotic methionine initiator tRNAs (tRNAsiMet), was determined by NMR spectroscopy. Unexpectedly, the modification has no effect on the thermal stability of the duplex. However, the extra ribose moiety is in the C(3′)‐endo conformation and takes up a well‐defined position in the minor groove, which is in agreement with its position in tRNAsiMet as determined by X‐ray crystallography. Molecular‐dynamics simulations on the RNA duplex in H2O show that the position of the extra ribofuranose moiety seems to be stabilized by bridged H‐bonds (mediated by two H2O molecules) to the backbone of the complementary chain.  相似文献   

12.
2‐Ethynyl‐DNA was developed as a potential DNA‐selective oligonucleotide analog. The synthesis of 2′‐arabino‐ethynyl‐modified nucleosides was achieved starting from properly protected 2′‐ketonucleosides by addition of lithium (trimethylsilyl)acetylide followed by reduction of the tertiary alcohol. After a series of protecting‐group manipulations, phosphoramidite building blocks suitable for solid‐phase synthesis were obtained. The synthesis of oligonucleotides from these building blocks was successful when a fast deprotection scheme was used. The pairing properties of 2′‐arabino‐ethynyl‐modified oligonucleotides can be summarized as follows: 1) The 2′‐arabino‐ethynyl modification of pyrimidine nucleosides leads to a strong destabilization in duplexes with DNA as well as with RNA. The likely reason is that the ethynyl group sterically influences the torsional preferences around the glycosidic bond leading to a conformation not suitable for duplex formation. 2) If the modification is introduced in purine nucleosides, no such influence is observed. The pairing properties are not or only slightly changed, and, in some cases (deoxyadenosine homo‐polymers), the desired stabilization of the pairing with a DNA complementary strand and destabilization with an RNA complement is observed. 3) In oligonucleotides of alternating deoxycytidine‐deoxyguanosine sequence, the incorporation of 2′‐arabino‐ethynyl deoxyguanosine surprisingly leads to the formation of a left‐handed double helix, irrespective of salt concentration. The rationalization for this behavior is that the ethynyl group locks such duplexes in a left‐handed conformation through steric blockade.  相似文献   

13.
Oligonucleotides composed of 1′,5′‐anhydro‐arabino‐hexitol nucleosides belonging to the L series (L ‐HNA) were prepared and preliminarily studied as a novel potential base‐pairing system. Synthesis of enantiopure L ‐hexitol nucleotide monomers equipped with a 2′‐(N6‐benzoyladenin‐9‐yl) or a 2′‐(thymin‐1‐yl) moiety was carried out by a de novo approach based on a domino reaction as key step. The L oligonucleotide analogues were evaluated in duplex formation with natural complements as well as with unnatural sugar‐modified oligonucleotides. In many cases stable homo‐ and heterochiral associations were found. Besides Tm measurements, detection of heterochiral complexes was unambiguously confirmed by LC‐MS studies. Interestingly, circular dichroism measurements of the most stable duplexes suggested that L ‐HNA form left‐handed helices with both D and L oligonucleotides.  相似文献   

14.
The synthesis of 5‐[(benzyloxy)methyl]‐substituted pyrimidine 2′‐deoxynucleosides 14 and 15 starting from the uracil derivative 6 and tetra‐O‐acetyl‐D ‐ribose is described (Schemes 1 – 3). These nucleosides were converted to the corresponding cyanoethyl phosphoramidites 18 and 19 , respectively, and incorporated into oligodeoxynucleotide decamers. The 5‐[(benzyloxy)methyl]‐nucleoside building blocks boTd and bomCd (bo=benzyloxy, bom=(benzyloxy)methyl) – shape analogs of the naturally occurring glucosylated nucleosides 1 and 2 (see Fig. 1) – lead to weaker binding affinities of oligodeoxynucleotides pairing to DNA as well as RNA complements. The modification is more destabilizing in the case of boTd than bomCd. Analysis of the thermodynamics of duplex formation shows that boTd and bomCd incorporation leads to a smaller entropy change in duplex formation that is, however, overcompensated by a less favorable enthalpy term. Molecular‐modeling studies suggest that the benzyl groups reside in the major groove which would explain the improved pairing entropy as a result of the exclusion of ordered H2O.  相似文献   

15.
The minihairpin 5′‐d(GCGAAGC)‐3′ ( 1 ) was modified either in the loop region, in the base‐paired stem, or at the 5′‐terminus by incorporation of base‐modified nucleosides. The thermal melting was correlated to the structural changes induced by the various donor‐acceptor properties of the nucleosides. Overhanging nonpaired nucleosides at the 5′‐terminus stabilized the hairpin, while a reverse of the dG3?dA5 sheared base pair to dA3?dG5 severely affected the stability. The combination of the minihairpin 5′‐d(GCGAAGC)‐3′ ( 1 ) and the thrombin‐binding aptamer 5′‐d(GGTTGGTGTGGTTGG)‐3′ ( 2 (= 46 )) resulted in the new construct 5′‐d(GGTTGGGCGAAGC GGTTGG)‐3′ ( 43 ) arising by replacement of the 5′‐d(TGT)‐3′ loop of 2 by the minihairpin. The fused oligonucleotide 43 exhibits a two‐phase thermal transition indicating the presence of the two unaltered moieties. According to slight changes of the Tm values of the construct 43 as compared to the separate units 1 and 2 , cooperative distorsions are discussed.  相似文献   

16.
The 2′‐trifluoromethylthio (2′‐SCF3) modification endows ribonucleic acids with exceptional properties and has attracted considerable interest as a reporter group for NMR spectroscopic applications. However, only modified pyrimidine nucleosides have been generated so far. Here, the syntheses of 2′‐SCF3 adenosine and guanosine phosphoramidites of which the latter was obtained in highly efficient manner by an unconventional Boc‐protecting group strategy, are reported. RNA solid‐phase synthesis provided site‐specifically 2′‐SCF3‐modified oligoribonucleotides that were investigated intensively. Their excellent behavior in 19F NMR spectroscopic probing of RNA ligand binding was exemplified for a noncovalent small molecule–RNA interaction. Moreover, comparably to the 2′‐SCF3 pyrimidine nucleosides, the purine counterparts were also found to cause a significant thermodynamic destabilization when located in double helical regions. This property was considered beneficial for siRNA design under the aspect to minimize off‐target effects and their performance in silencing of the BASP1 gene was demonstrated.  相似文献   

17.
The positional change of nitrogen‐7 of the RNA constituent guanosine to the bridgehead position‐5 leads to the base‐modified nucleoside 5‐aza‐7‐deazaguanosine. Contrary to guanosine, this molecule cannot form Hoogsteen base pairs and the Watson–Crick proton donor site N3—H becomes a proton‐acceptor site. This causes changes in nucleobase recognition in nucleic acids and has been used to construct stable `all‐purine' DNA and DNA with silver‐mediated base pairs. The present work reports the single‐crystal X‐ray structure of 7‐iodo‐5‐aza‐7‐deazaguanosine, C10H12IN5O5 ( 1 ). The iodinated nucleoside shows an anti conformation at the glycosylic bond and an N conformation (O4′‐endo) for the ribose moiety, with an antiperiplanar orientation of the 5′‐hydroxy group. Crystal packing is controlled by interactions between nucleobase and sugar moieties. The 7‐iodo substituent forms a contact to oxygen‐2′ of the ribose moiety. Self‐pairing of the nucleobases does not take place. A Hirshfeld surface analysis of 1 highlights the contacts of the nucleobase and sugar moiety (O—H…O and N—H…O). The concept of pK‐value differences to evaluate base‐pair stability was applied to purine–purine base pairing and stable base pairs were predicted for the construction of `all‐purine' RNA. Furthermore, the 7‐iodo substituent of 1 was functionalized with benzofuran to detect motional constraints by fluorescence spectroscopy.  相似文献   

18.
Temporal information about cellular RNA populations is essential to understand the functional roles of RNA. We have developed the hydrazine/NH4Cl/OsO4‐based conversion of 6‐thioguanosine (6sG) into A′, where A′ constitutes a 6‐hydrazino purine derivative. A′ retains the Watson–Crick base‐pair mode and is efficiently decoded as adenosine in primer extension assays and in RNA sequencing. Because 6sG is applicable to metabolic labeling of freshly synthesized RNA and because the conversion chemistry is fully compatible with the conversion of the frequently used metabolic label 4‐thiouridine (4sU) into C, the combination of both modified nucleosides in dual‐labeling setups enables high accuracy measurements of RNA decay. This approach, termed TUC‐seq DUAL, uses the two modified nucleosides in subsequent pulses and their simultaneous detection, enabling mRNA‐lifetime evaluation with unprecedented precision.  相似文献   

19.
2′‐O‐[(4‐Trifluoromethyl‐triazol‐1‐yl)methyl] reporter groups have been incorporated into guanosine‐rich RNA models (including a known bistable Qd/Hp RNA and two G‐rich regions of mRNA of human prion protein, PrP) and applied for the 19F NMR spectroscopic characterization of plausible G‐quadruplex/hairpin (Qd/Hp) transitions in these RNA structures. For the synthesis of the CF3‐labeled RNAs, phosphoramidite building blocks of 2′‐O‐[(4‐CF3‐triazol‐1‐yl)methyl] nucleosides (cytidine, adenosine, and guanosine) were prepared and used as an integral part of the standard solid‐phase RNA synthesis. The obtained 19F NMR spectra supported the usual characterization data (obtained by UV‐ and CD‐melting profiles and by 1H NMR spectra of the imino regions) and additionally gave more detailed information on the Qd/Hp transitions. The molar fractions of the secondary structural species (Qd, Hp) upon thermal denaturation and under varying ionic conditions could be determined from the intensities and shifts of the 19F NMR signals. For a well‐behaved Qd/Hp transition, thermodynamic parameters could be extracted.  相似文献   

20.
Oligonucleotides containing 7‐deaza‐2′‐deoxyinosine derivatives bearing 7‐halogen substituents or 7‐alkynyl groups were prepared. For this, the phosphoramidites 2b – 2g containing 7‐substituted 7‐deaza‐2′‐deoxyinosine analogues 1b – 1g were synthesized (Scheme 2). Hybridization experiments with modified oligonucleotides demonstrate that all 2′‐deoxyinosine derivatives show ambiguous base pairing, as 2′‐deoxyinosine does. The duplex stability decreases in the order Cd>Ad>Td>Gd when 2b – 2g pair with these canonical nucleosides (Table 6). The self‐complementary duplexes 5′‐d(F7c7I‐C)6, d(Br7c7I‐C)6, and d(I7c7I‐C)6 are more stable than the parent duplex d(c7I‐C)6 (Table 7). An oligonucleotide containing the octa‐1,7‐diyn‐1‐yl derivative 1g , i.e., 27 , was functionalized with the nonfluorescent 3‐azido‐7‐hydroxycoumarin ( 28 ) by the Huisgen–Sharpless–Meldal cycloaddition ‘click’ reaction to afford the highly fluorescent oligonucleotide conjugate 29 (Scheme 3). Consequently, oligonucleotides incorporating the derivative 1g bearing a terminal C?C bond show a number of favorable properties: i) it is possible to activate them by labeling with reporter molecules employing the ‘click’ chemistry. ii) Space demanding residues introduced in the 7‐position of the 7‐deazapurine base does not interfere with duplex structure and stability (Table 8). iii) The ambiguous pairing character of the nucleobase makes them universal probes for numerous applications in oligonucleotide chemistry, molecular biology, and nanobiotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号