首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present article reviews the use of polyethylene glycol (PEG) or polyoxyethylene (POE) as the stationary phase for the separation of inorganic anions in ion chromatography and discusses about the retention mechanisms involved in the separation of anions on the novel stationary phases. PEG permanently coated on a hydrophobic stationary phase retained anions in the partition mode and allowed us to use high-concentration eluents because the retention of anions increased with increasing eluent concentration for most of the eluents. This situation was convenient to determine trace anions contained in seawater samples without any disturbance due to matrices. Chemically bonded POE stationary phases retained not only anions but also cations. Anions were retained in the ion-exchange mode, although POE chains possess no ion exchange sites. The retention behavior suggested that eluent cations could be trapped among multiple POE chains via ion-dipole interaction, and that the trapped cations worked as the anion-exchange sites. Anions could be separated using crown ether, i.e., cyclic POE, as the eluent additive with a hydrophobic stationary phase, where analyte anions were retained via electrostatic interaction with the eluent cation trapped on the crown ether.  相似文献   

2.
Inorganic anions were separated on hydrophobic stationary phases such as triacontyl-functionalized silica. Eluent conditions were examined in detail, and iodate, nitrate, iodide, and thiocyanate could be separated by using aqueous solutions. The effect of the eluent concentration on the retention of analyte anions was examined for a wide range of sodium sulfate concentrations of up to 1 M. The retention factor of hydrophobic anions decreased with increasing sodium sulfate concentration in the lower concentration region, while it increased with increasing sodium sulfate concentration in the higher concentration region. The addition of a small amount of an organic substance such as acetonitrile and tetraethylene glycol increased the retention of iodide and thiocyanate, while the addition of alcohols decreased their retention. Operating at lower temperature also increased the retention of analyte anions. It was expected that inorganic anions were retained on the stationary phase via hydrophobic interactions. The retention mechanism was discussed, considering the results obtained.  相似文献   

3.
Methyl-capped poly(ethylene oxide) moieties were chemically bonded to silica gel using an amine-reactive modification reagent and evaluated as the stationary phase for ion chromatography. In this work, primary amino groups of an aminopropylsilica packing material were reacted with methyl-PEO12-NHS ester (succinimidyl-{[N-methyl]-dodecaethyleneglycol} ester) in phosphate buffer (pH 7.0) at room temperature. The prepared poly(ethylene oxide)-bonded stationary was evaluated for the separation of inorganic anions, and the retention behavior of inorganic anions on the prepared stationary phase was examined. The elution order of the investigated anions was the same as that observed in common ion chromatography. Both cations and anions of the eluent affected the retention of the analyte anions. Ion exchange was involved for the retention of analyte anions, although the present stationary phase does not possess any discrete ion-exchange sites. The stationary phase was applied to the separation of trace anions contained in tap water and a rock salt.  相似文献   

4.
A new stationary phase N-methylimidazolium functionalized ZrO(2)/SiO(2)-4 (Zr/SilprMim) has been prepared. The chromatographic property of this stationary phase is investigated by ion chromatography (IC) with inorganic and organic anions, and normal phase HPLC with basic compounds and hydroxybenzenes. The effects of pH and the strength of Lewis base of eluent on separation of anions are studied. This new stationary phase is also compared with a N-methylimidazolium functionalized SiO(2) stationary phase (SilprMim). The results show that this new stationary phase can be used in analysis of inorganic anions with great prospects. At the same time, successful separations of some organic anions can be obtained by using phosphate buffer solution as mobile phase. This new stationary phase also has a distinct advantage in the separation of basic compounds in normal phase. But due to the presence of Lewis acid sites on the surface of ZrO(2)/SiO(2)-4, Lewis bases such as hydroxybenzenes adsorb very strongly on this new stationary phase, and Lewis acid sites can be masked or modified by the eluent that contain Lewis base groups.  相似文献   

5.
Open-tubular capillaries have been joined together for use in on-column ion-exchange preconcentration of anions by capillary electrochromatography (CEC) with elution by a transient isotachophoretic gradient. This involved the coupling of a preconcentration capillary and a separation capillary using a PTFE sleeve. Such coupling allowed precise lengths of differently coated capillaries to be joined in-line to form a single multi-mode column. The different segments could be tailored to optimize a separation by either altering the length of each segment to precisely manipulate the amount of stationary phase present or by changing the internal diameter of each segment to alter the phase ratio in the chromatographic column without affecting the path length for UV detection. In this work, a segmented in-line capillary was used in conjunction with a fluoride-octanesulfonate discontinuous electrolyte system to increase the number of anions that could be preconcentrated and separated. Quaternary ammonium functionalised latex particles were used for creating the preconcentration segment and the separation segment was coated with poly(diallyldimethylammonium chloride). This allowed the detection of trace anions in drinking water and in situ sampling of river water for the analysis of trace inorganic anions. The repeatability of producing the quaternary ammonium functionalized latex-coated segments was assessed and the effect of segmentation on peak efficiency was investigated.  相似文献   

6.
杨瑞琴  蒋生祥 《分析化学》1998,26(9):1121-1124
采用氯甲基苯乙烯包夹硅胶基质制备出一种新型强阴离子色谱柱填料,该填料具有良好的色谱柱性能,可以较地的分离常见的6种无机阴离子,6种低碳链有机酸以及甲酸,乙酸和一些无机阴离子的混合物。  相似文献   

7.
A new imidazolium anion-exchange phase immobilized on silica is synthesized. HPLC separations of common inorganic anions (IO3-, Cl-, NO2-, Br-, NO3-, I-, SCN-) have been performed using a HPLC column (200 mm x 4.6 mm I.D.) packed with this stationary phase, with a phosphate buffer solution as the mobile phase and UV detection at 200 nm. The effects of pH and concentration of eluent on the separation of anions have been studied. Chromatographic parameters are calculated and the results show that the new stationary phase is of significant potential for the analysis of these anions. Successful separations of some ordinary organic anions have also been achieved with the said stationary phase. Meaningfully, organic and inorganic anions can be determined simultaneously and satisfactorily with several neutral compounds using the column. The separation of some organic compounds including hydroxybenzenes, bases and amines by this stationary phase with only water as the eluent has been investigated.  相似文献   

8.
A new zwitterionic stationary phase based on silica bonded with 1-alkyl-3-(propyl-3-sulfonate) imidazolium was synthesized and characterized in this paper. The materials have been confirmed and evaluated by elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. Potassium and calcium were separated simultaneously with several common inorganic anions including an iodate, chloride, bromide, nitrate and iodide on the phase. The effects of the concentration, organic solvent and pH of the eluent on the separation of anions were studied. Operated in the anion-exchange mode, this new stationary phase shows considerable promise for the separation of anions. Bases, vitamins and three imidazolium ionic liquids with different alkyl chains are also separated successfully on this column. The stationary phase has multiple retention mechanisms, such as anion-exchange, electrostatic attraction and repulsion interactions, and hydrophobic interaction between the zwitterionic stationary phase and specimens.  相似文献   

9.
A novel stationary phase based on quinolinium ionic liquid-modified silica was prepared and evaluated for high-performance liquid chromatography. The stationary phase was investigated via normal-phase (NP), reversed-phase (RP), and anion-exchange (AE) chromatographic modes, respectively. Polycyclic aromatic hydrocarbons, phthalates, parabens, phenols, anilines, and inorganic anions were used as model analytes in chromatographic separation. Using the newly established column, organic compounds were separated successfully by both NP and RP modes, and inorganic anions were also separated completely by AE mode. The obtained results indicated that the stationary phase could be applied in different chromatographic modes, with multiple-interaction mechanism including van der Waals forces (dipole–dipole, dipole–induced dipole interactions), hydrophobic, ππ stacking, electrostatic forces, hydrogen bonding, anion-exchange interactions, and so on. The column packed with the stationary phase was applied to analyze phthalates and parabens in hexane extracts of plastics. Tap water and bottled water were also analyzed by the column, and nitrate was detected as 20.1 and 13.8 mg L?1, respectively. The results illustrated that the stationary phase was potential in practical applications.
Figure
?  相似文献   

10.
A dicationic imidazolium ionic liquid modified silica stationary phase was prepared and evaluated by reversed‐phase/anion‐exchange mixed‐mode chromatography. Model compounds (polycyclic aromatic hydrocarbons and anilines) were separated well on the column by reversed‐phase chromatography; inorganic anions (bromate, bromide, nitrate, iodide, and thiocyanate), and organic anions (p‐aminobenzoic acid, p‐anilinesulfonic acid, sodium benzoate, pathalic acid, and salicylic acid) were also separated individually by anion‐exchange chromatography. Based on the multiple sites of the stationary phase, the column could separate 14 solutes containing the above series of analytes in one run. The dicationic imidazolium ionic liquid modified silica can interact with hydrophobic analytes by the hydrophobic C6 chain; it can enhance selectivity to aromatic compounds by imidazolium groups; and it also provided anion‐exchange and electrostatic interactions with ionic solutes. Compared with a monocationic ionic liquid functionalized stationary phase, the new stationary phase represented enhanced selectivity owing to more interaction sites.  相似文献   

11.
A vitamin U-bonded stationary phase was prepared and the retention behavior of inorganic anions was examined using ion chromatography. Inorganic anions were retained on the vitamin U-bonded stationary phase under acidic as well as neutral eluent conditions in the ion-exchange mode. The elution order of the examined anions under neutral eluent conditions was nearly the same as that observed in common ion exchange mode, while the elution order observed under acidic eluent conditions was completely different from that observed in common ion exchange mode. The retention of the analyte anions under the neutral eluent conditions was due to the sulfonium groups of the vitamin U, while protonated primary amino groups caused retention of the analyte anions with different selectivity under acidic conditions. The retention factor of the analyte anions increased with decreasing eluent concentration under both eluent conditions. The present system was applied to the determination of bromide and nitrate contained in seawater.  相似文献   

12.
Retention of anions on silica-based metalloporphyrin stationary phases.   总被引:1,自引:0,他引:1  
The silica-based Fe(III)-protoporphyrin and Zn-tetraphenylporphyrin stationary phases were examined for the HPLC separation of anions. The retention of nine common inorganic anions as well as benzoate anion (BA) and its hydroxy analogues (HBA) was examined using tartrate, acetate, and succinate eluents. The retention factors of inorganic anions on the FeProP stationary phase were in the order Cl- < NO3- < ClO4- < I- < SCN- and for organic anions benzoate < p-hydroxybenzoate < m-hydoxybenzoate < o-hydroxybenzoate. The retention factors of organic anions examined for a ZnTPP column were in the order p-HBA < m-HBA < BA < o-HBA.  相似文献   

13.
Arai K  Mori M  Hironaga T  Itabashi H  Tanaka K 《色谱》2012,30(4):404-408
A combination of hydrophilic interaction chromatographic(HILIC) column and a weakly acidic cation-exchange resin(WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography(IC).Firstly,the capability of HILIC column for the separation of analyte ions was evaluated under acidic eluent conditions.The columns used were SeQuant ZIC-HILIC(ZIC-HILIC) with a sulfobetaine-zwitterion stationary phase(ZIC-HILIC) and Acclaim HILIC-10 with a diol stationary phase(HILIC-10).When using tartaric acid as the eluent,the HILIC columns indicated strong retentions for anions,based on ion-pair interaction.Especially,HILIC-10 could strongly retain anions compared with ZIC-HILIC.The selectivity for analyte anions of HILIC-10 with 5 mmol/L tartaric acid eluent was in the order of I-> NO-3 > Br-> Cl-> H2PO-4.However,since HILIC-10 could not separate analyte cations,a WCX column(TSKgel Super IC-A/C) was connected after the HILIC column in series.The combination column system of HILIC and WCX columns could successfully separate ten ions(Na+,NH+4,K+,Mg2+,Ca2+,H2PO-4,Cl-,Br-,NO-3 and I-) with elution of 4 mmol/L tartaric acid plus 8 mmol/L 18-crown-6.The relative standard deviations(RSDs) of analyte ions by the system were in the ranges of 0.02%-0.05% in retention times and 0.18%-5.3% in peak areas through three-time successive injections.The limits of detection at signal-to-noise ratio of 3 were 0.24-0.30 μmol/L for the cations and 0.31-1.2 μmol/L for the anions.This system was applied for the simultaneous determination of the cations and the anions in a vegetable juice sample with satisfactory results.  相似文献   

14.
Electrostatic ion chromatography (EIC) using a zwitterionic stationary phase (formed by coating a C18 material with a hydrophobic zwitterionic surfactant) was studied with a mobile phase comprising an aqueous solution of histidine at the pH of its isoelectric point, together with non-suppressed conductometric detection. Anions and cations were found to be eluted as separate peaks, unlike the elution behaviour observed on the same system when pure water was used as mobile phase. An explanation was suggested in terms of protonation equilibria of the overall uncharged histidine to form small amounts of histidine cations and anions in the mobile phase which could act as counterions for analyte anions and cations. This suggestion was supported by measured pH changes occurring in the bands of eluted analyte anions (a decreased pH compared to the mobile phase) and cations (an increased pH compared to the mobile phase). The analytical potential of this type of EIC is discussed.  相似文献   

15.
以苯乙烯-二乙烯基苯微球为基质,建立了一种新型离子色谱固定相的制备方法。在基质微球表面合成一层聚缩水甘油甲基丙烯酸酯聚合物层(GMA),随后与甲胺及1,4-丁二醇二环氧甘油醚(BDDE)交替反应,与其表面接枝上带正电荷的季铵基团,可用于阴离子的分离。通过改变接枝反应的次数,控制交换树脂的交换容量。自制色谱固定相能够用于7种常规阴离子分离分析,并用于自来水中常规阴离子的检测。分离检测结果可与商用离子色谱柱相比,同时水负峰能与氟离子完全分离,不影响氟离子的定量检测。  相似文献   

16.
A carboxybetaine-type zwitterionic stationary phase obtained by immobilizing Mitsubishi Reagent EF-700 (C(8)F(17)SO(2)NHC(3)H(6)N(+) (CH(3))(2)-C(2)H(4)-COO(-)) onto a reversed-phase column was used for chromatographic separation of ions. When aqueous electrolyte solutions having higher pH values (>8) were used as eluents, the model analyte ions (NO(2)(-), H(2)PO(4)(-), Cl(-), Br(-), NO(3)(-), ClO(3)(-), I(-) and SCN(-)) were co-eluted and appeared at the void volume of this HPLC system. However, when aqueous electrolyte solutions having lower pH values (<5.5) were used as eluents, these anions were well retained and separated. Furthermore, when acetate buffers (NaAc/HAc) were used as eluents, plots of log k' (k', retention factor) versus pH of eluents (at constant [NaAc+HAc]), and log k' versus log [NaAc+HAc] (at constant pH), were linear with negative slopes. Breakthrough curves for acid solutions obtained using conductivity detection showed that H(+) ions and their conjugate anions were both retained on the stationary phase and the degree of binding was found to be independent of the acid species used. The degree to which the eluent cation was bound onto the carboxylate functionality of the zwitterion was found to exert a major effect on the retention of analyte anions. A strongly bound cation, such as H(+), reduced electrostatic repulsion effects exerted by the carboxylate functionality on analyte anions, so that they could freely access the quaternary ammonium sites on the zwitterion. It is concluded based on these experimental results that both the charges on the zwitterionic stationary phase make meaningful contributions to the separation of the analyte ions.  相似文献   

17.
In this study, the screening steps of chiral separation strategies with polysaccharide‐based chiral stationary phases were applied on boron cluster compounds in normal‐phase liquid chromatography (NPLC) and polar organic solvents chromatography (POSC). Since the screening steps were initially developed to analyze organic compounds, their applicability for boron clusters was investigated. Overall, the screening steps in NPLC were applicable for the separation of zwitterions, while for anions mostly no elution was observed. A hypothesis for the latter behavior is precipitation of anions in the nonpolar mobile phases. Ten out of 11 compounds could be partially or baseline separated on the NPLC screening systems. In POSC, all zwitterions were separated on at least one of the screening systems, with an overall lower retention as in NPLC. Anions were detected but not separated in the majority of the experiments. Also their retention on the chiral stationary phases was very limited. This study showed that the chiral discrimination potential of chemically modified polysaccharides is meaningful for chiral separations of structurally chiral boron cluster species, but needs further systematic research, in which recognition mechanisms should be further explored. In addition, some unusual peaks also indicated that conditions with a high separation efficiency must first be searched for some of the tested systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Silica monoliths coated with functionalised latex particles have been prepared for use in monolithic ion-exchange capillary electrochromatography (IE-CEC) for the separation of inorganic anions. The ion-exchange monoliths were prepared using 70 nm quaternary ammonium, anion-exchange latex particles, which were bound electrostatically to a monolithic silica skeleton synthesised in a fused silica capillary. The resulting stationary phases were characterised in terms of their chromatographic performance and capacity. The capacity of a 50 microm diameter 25 cm latex-coated silica monolith was found to be 0.342 nanoequivalents and 80,000 theoretical plates per column were typically achieved for weakly retained anions, with lower efficiency being observed for analytes exhibiting strong ion-exchange interaction with the stationary phase. The electroosmotic flow (EOF) was reversed after the latex-coating was applied (-25.96 m2 V(-1) s(-1), relative standard deviation (RSD) 2.8%) and resulted in anions being separated in the co-EOF mode. Ion-exchange interactions between the analytes and the stationary phase were manipulated by varying the ion-exchange selectivity coefficient and the concentration of a competing ion (phosphate or perchlorate) present in the electrolyte. Large concentrations of competing ion (greater than 1M phosphate or 200 mM perchlorate) were required to completely suppress ion-exchange interactions, which highlighted the significant retention effects that could be achieved using monolithic columns compared to open tubular columns, without the problems associated with particle-packed columns. The latex-coated silica monoliths were easily produced in bulk quantities and performed reproducibly in acidic electrolytes. The high permeability and beneficial phase ratio makes these columns ideal for micro-LC and preconcentration applications.  相似文献   

19.
Sun M  Feng J  Liu S  Xiong C  Liu X  Jiang S 《Journal of chromatography. A》2011,1218(24):3743-3749
A novel multi-interaction stationary phase based on 4,4'-dipyridine modified silica was synthesized and characterized, by infrared spectra, X-ray photoelectron spectroscopy and elemental analysis. Mechanism involved in the chromatographic separation is the multi-interaction including π-π, hydrophobic, hydrogen-bonding, electrostatic and anion-exchange interactions. Based on these interactions, polycyclic aromatic hydrocarbons and phenols were successfully separated respectively in reversed-phase chromatography; inorganic and organic anions were also separated individually in anion-exchange chromatography by using the same column. Furthermore, the simultaneous separation of neutral organics, inorganic and organic anions was obtained on this stationary phase with the appropriate mobile phase. Therefore, such stationary phase has the characteristics of multi-interaction mechanism and multi-modal separation, and has potential application on complex samples.  相似文献   

20.
Liu Y  Du Q  Yang B  Zhang F  Chu C  Liang X 《The Analyst》2012,137(7):1624-1628
A silica based amino stationary phase was prepared by immobilization of propargylamine on azide-silica via click chemistry. This readily prepared click amino stationary phase demonstrated good selectivity in separation of common inorganic anions under ion chromatography (IC) mode, and the triazole ring in combination with free amino group was observed to play a major role for separation of the anions examined. On the other hand, the stationary phase also showed good hydrophilic interaction liquid chromatography (HILIC) properties in the separation of polar compounds including nucleosides, organic acids and bases. The retention mechanism was found to match well the typical HILIC retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号