首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of MnII(O2CMe)2 and NaCN or LiCN in water forms a light green insoluble material. Structural solution and Rietveld refinement of high-resolution synchrotron powder diffraction data for this unprecedented, complicated compound of previously unknown composition revealed a new alkali-free ordered structural motif with [MnII43-OH)4]4+ cubes and octahedral [MnII(CN)6]4− ions interconnected in 3D by MnII-N≡C-MnII linkages. The composition is {[MnII(OH2)3][MnII(OH2)]3}(μ3-OH)4][MnII(μ-CN)2(CN)4] ⋅ H2O=[MnII43-OH)4(OH2)6][MnII(μ-CN)2(CN)4] ⋅ H2O, which is further simplified to [Mn4(OH)4][Mn(CN)6](OH2)7 ( 1 ). 1 has four high-spin (S=5/2) MnII sites that are antiferromagnetically coupled within the cube and are antiferromagnetically coupled to six low-spin (S=1/2) octahedral [MnII(CN)6]4− ions. Above 40 K the magnetic susceptibility, χ(T), can be fitted to the Curie–Weiss expression, χ ∝(Tθ)−1, with θ=−13.4 K, indicative of significant antiferromagnetic coupling and 1 orders as an antiferromagnet at Tc=7.8 K.  相似文献   

2.
The water exchange reactions of [PuO2(OH2)5]2+ and [UO2(OH2)5]2+ were investigated with density functional theory (DFT) and wave function theory (WFT). Geometries and vibrational frequencies were calculated with DFT and CPCM hydration. The electronic energies were evaluated with general multiconfiguration quasi-degenerate second-order perturbation theory (GMC-QDPT2). Spin-orbit (SO) effects, computed with SO configuration interaction (SO–CI), are negligible. Both Actinyl(VI) ions react via an associative exchange mechanism, most likely Ia. The Gibbs activation energies (ΔG?) at 25 °C are 33–34 and 30–37 kJ mol?1 for [PuO2(OH2)5]2+ and [UO2(OH2)5]2+, respectively. ΔG? for dissociative mechanisms (D, Id) is higher by more than 15 kJ mol?1.  相似文献   

3.
Summary Vanillin thiosemicarbazone (VTSC) has been used to isolate the complexes of the types [M(VTSC)2(H2O)2]X2 (M=MnII, FeII, CoII, or NiII and X=Cl) and [M(VTSC)X2]H2O (M=CuII, ZnII, CdII or HgII and X=Cl). Probable structures of these complexes are suggested on the basis of elemental analysis, molar conductance, magnetic moment and electronic and i.r. spectral data. The fungicidal activity of VTSC and the isolated complexes has been evaluated on pathogenic fungi,Alternaria (Sp.),Paecilomyces (Sp.) andPestalotia (Sp.).On leave from the University of Myosore.  相似文献   

4.
A series of transition metal complexes of the type [M(ah)3](ClO4)2 (16) [M = MnII, FeII, CoII, NiII, CuII and ZnII, ah = acetylhydrazine] have been prepared by the reaction of M(ClO4)2 · 6H2O with acetylhydrazine formed in situ by the reaction of hydrazine hydrate and acetylsalicylic acid methyl ester. The chelating behaviour of acetylhydrazine and overall geometry of these complexes have been spectroscopically investigated by means of FT-IR, 1H-n.m.r. and electronic spectral techniques, as well as by elemental analysis data, molar conductance values and magnetic susceptibility measurements. Single X-ray structure determination of complex (4) revealed three acetylhydrazine ligands coordinated to nickel ion in a bidentate manner maintaining an octahedral environment. In all other complexes too, an octahedral geometry has been proposed on the basis of results obtained by various physico-chemical studies.  相似文献   

5.
Summary The preparation and characterization oftris-complexes of MnII, CoII, NiII, CuII and ZnII with a new pyridylhydrazone, 2-pyridylcarbaldehyde-N,N-dimethylhydrazone (pch), are described. In all the complexes pch behaves as a bidentate ligand binding through the pyridine and azomethyne nitrogen atoms. The complexes appear to be monomeric, high spin six-coordinate, and a distorted octahedral stereochemistry around the metal is suggested. The e.p.r. results for both CuII compounds indicate a mainly dx 2–y2 ground state with a static Jahn-Teller distortion, whilst for the MnII complex the e.p.r. data indicates a very low symmetry for the MnN6 polyhedron.  相似文献   

6.
Complexes of the type [M(tren)(abpt)](NO3)2(H2O)n (1–6) [M = MnII, FeII, CoII, CuII, ZnII (n = 2), NiII (n = 2.25), tren = tris(2-aminoethyl)amine, and abpt = 4-amino-3,5-bis(pyridin-2yl)-1,2,4 triazole] have been prepared. The bonding mode and overall geometry of the complexes have been deduced by elemental analyses, molar conductance values, spectral studies (obtained from FT-IR), 1H-n.m.r., electronic spectral analyses and magnetic susceptibility measurements. A detailed molecular structure of complex (4) has been determined by single X-ray crystallography.  相似文献   

7.
The kinetics of the interaction of adenosine with cis‐[Pt(cis‐dach)(OH2)2]2+ (dach = diaminocyclohexane) was studied spectrophotometrically as a function of [cis‐[Pt(cis‐dach)(OH2)2]2+], [adenosine], and temperature at a particular pH (4.0), where the substrate complex exists predominantly as the diaqua species and the ligand adenosine exists as a neutral molecule. The substitution reaction shows two consecutive steps: the first is the ligand‐assisted anation followed by a chelation step. The activation parameters for both the steps have been evaluated using Eyring equation. The low negative value of ΔH1 (43.1 ± 1.3 kJ mol?1) and the large negative value of ΔS1 (?177 ± 4 J K?1 mol?1) along with ΔH2 (47.9 ± 1.8 kJ mol?1) and ΔS2 (?181 ± 6 J K?1 mol?1) indicate an associative mode of activation for both the aqua ligand substitution processes. The kinetic study was substantiated by infrared and electrospray ionization mass spectroscopic analysis. © 2011 Wiley Peiodicals, Inc. Int J Chem Kinet 43: 219–229, 2011  相似文献   

8.
The crystal structures of two new isomorphous transition metal squarato complexes [MII(C4O4)(dmso)2(OH2)2] [MII = CoII (3d7), MnII (3d5); dmso = dimethylsulfoxide] and their magnetic properties are reported. The compounds feature two symmetrically independent chains, in which 1,3‐bridging squarato ligands connect cations in distorted octahedral surroundings of pseudo‐symmetry D4h. From an equimolar solution of CoCl2 · 6H2O and MnCl2 · 2H2O a mixed‐metal coordination polymer crystallizes; it represents a solid solution and adopts the same structure as the corresponding monometallic compounds. The results of the diffraction experiment unambiguously proof the presence of both CoII and MnII cations in either independent site albeit no precise ratio between the metal cations involved may be deduced from these findings. The difference in the magnetic properties between CoII and MnII cations in the given ligand field has allowed us to establish their ratio in the solid solution more reliably than by X‐ray diffraction: Accounting for ligand field potential and spin‐orbit coupling of CoII and regarding MnII as a pure spin system, the calculations yielded a fraction of 73 % CoII in the mixed‐metal polymer. With respect to superexchange effects only weak antiferromagnetic interactions have been detected for the three coordination polymers.  相似文献   

9.
Summary N-benzamidosalicylaldimine (H2L) complexes of CuII, NiII, CoII, FeII, MnII. VOIV and TiOIV have been prepared. The ligand probably coordinates to the metal from the hydroxyl, carbonyl and imino groups.  相似文献   

10.
Summary The reaction of warm alcoholic solutions of acetates of CoII, MnII, ZnII and NiII with 2, 6-diacetylpyridine andS-methylisothiosemicarbazide hydrogen iodide yielded the complexes: [Co(H2L)I2]·H2O, [Mn(H2L)(MeOH)2]I2, [Zn(H2L)(MeOH)I]I and [Ni(HL)]I, (H2L=the pentadentate pentaaza-ligand 2, 6-diacetylpyridine bis(S-methylisothiosemicarbazone)). The reaction of methanolic solutions of [Ni(HL)]I and NH4NCS or LiOAc.2H2O, give [Ni(HL)]NCS and NiL, respectively. For the complexes of CoII, MnII and ZnII, a pentagonal bipyramidal configuration is proposed, with H2L in the equatorial plane and two unidentate ligands (I and/or MeOH) in the axial positions. The complexes [Ni(HL)]X (X=I or NCS) and NiL probably have monomeric five- and dimeric six-coordinate structures, respectively, in which only the chelate ligand is involved in coordination.  相似文献   

11.
Complexes of CrIII, MnII, FeIII, CoII, NiII and CuII containing a macrocyclic pentadentate nitrogen–sulphur donor ligand have been prepared via reaction of a pentadentate ligand (N3S2) with transition metal ions. The N3S2 ligand was prepared by [1 + 1] condensation of 2,6-diacetylpyridine with 1,2-di(o-aminophenylthio(ethane. The structures of the complexes have been elucidated by elemental analyses, molar conductance, magnetic susceptibility measurements, i.r., electronic and e.p.r. spectral studies. The complexes are of the high spin type and are six-coordinate.  相似文献   

12.
The electrochemical behavior of two manganese (Mn)‐substituted polyoxoanions, the dissymmetrical Dawson sandwich‐type [MnII4(H2O)2(H4AsW15O56)2]18? and the Keggin sandwich banana‐shaped [((MnIIOH2)MnII2PW9O34)2(PW6O26)]17? is investigated. At pH 5, the oxidation of the MnII‐centers results in one oxidation wave for [MnII4(H2O)2(H4AsW15O56)2]18? and two oxidation waves for [((MnIIOH2)MnII2PW9O34)2(PW6O26)]17?. To the best of our knowledge, presence of the second Mn‐based wave is rarely observed in the electrochemistry of Mn‐containing polyoxometalates. Deposition of Mn‐oxides electrocatalysts for dioxygen reduction is noticed by cyclic voltammetry, which can be distinguished by the significant positive shift in potentials of the dioxygen reduction reaction.  相似文献   

13.
In the title compound [systematic name: tri­aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane‐κ6O)(2‐nitro­phenolato‐κO)­barium(II)–aqua(1,4,7,10,13,16‐hexaoxa­cyclo­octa­decane‐κ6O)‐ bis(2‐nitro­phenolato‐κ2O,O′)­barium(II)–2‐nitro­phenolate (1/1/1)], [Ba(C12H24O6)(C6H4NO3)(H2O)3][Ba(C12H24O6)(C6H4NO3)2(H2O)](C6H4NO3), the two BaII atoms encapsulated by the 18‐crown‐6 rings have different coordinations. Although both BaII atoms are coordinated to the six O atoms of the crowns, in the neutral moiety, the BaII atom is coordinated to one terminal O atom from a water mol­ecule, two phenolate O atoms and two nitro‐group O atoms, while in the cationic moiety, the BaII atom is coordinated to three terminal O atoms from water mol­ecules and one phenolate O atom. Both the crowns are eclipsed and translated along the b direction. In the asymmetric unit, the three components are interconnected by four O—H?O interactions. The packing is stabilized by two intermolecular C—H?O interactions and by one O—H?O interaction.  相似文献   

14.
Two zinc coordination polymers, {[Zn(HATr)2](NO3)2}n (1) and {[Zn2(HATr)4](ZnCl4)(NO3)2·H2O}n (2), were synthesized from reactions of 3-hydrazino-4-amino-1,2,4-triazole dihydrochloride (HATr·2HCl) with Zn(NO3)2. The polymers were characterized by single-crystal X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), elemental analysis, and differential scanning calorimetry. The crystal structures revealed that 1 and 2 have 1-D-chain structures, which were further assembled to form 3-D-frameworks by hydrogen bonds. Thermal analyses showed that these two compounds have thermal stability up to 280 °C. The energies of combustion, enthalpies of formation, critical temperatures of thermal explosion, entropies of activation (ΔS), enthalpies of activation (ΔH), and free energies of activation (ΔG) were also measured and calculated. Furthermore, the sensitivities of 1 and 2 toward impact, friction, and static were determined, which revealed that 1 and 2 were less sensitive than Ni(N2H4)3(NO3)2.  相似文献   

15.
The kinetics of complexation of MnII, CoII and ZnII by isocitric acid have been studied by the stopped flow method at 15,25 and 35°C, ionic strength 0.20 M (NaClO4) and pH range 4.50–6.35. Under these experimental conditions, one process is observed for each system within a few seconds. A mechanism is proposed to account for the observed behaviour, which is associated with participation of the OH group in complex formation. Activation energies are also reported. TMC 2593  相似文献   

16.
Asymmetric 7-formyanil-substituted-imino-4-(4-methyl-2-butanone)-8-hydroxyquinoline-5-sulphonic acid (Schiff bases), react with CoII, NiII and CuII ions to give 1:2, 1:1 and 2:1 complexes as established by conductometric titrations in 1:1 DMF:H2O. The complexes were investigated by elemental analyses, molecular weight determinations, molar conductance, magnetic moments, thermal analysis, i.r., u.v.–vis. and e.s.r. spectra. The complexes have an octahedral crystal structure and general formula [ML·(OH2)2], where MII = Co, Ni and Cu, and L = Na[7—X—HL], (—X— = (CH2)2, (CH2)3, p-C6H4, o-C6H4). Antimicrobial activity of these new ligands and their transition metal complexes has been screened in vitro on common fungi and bacteria.  相似文献   

17.
A series of novel complexes of the type Cu(II)(Ln)2(H2O)2]xH2O [where Ln = L 1–4 , these ligands being described as: L 1 , 2‐({4‐[6,7‐dihydrothieno[3,2‐c]pyridin‐5(4H)‐ylsulfonyl]phenylimino}methyl)phenol, x = 1; L 2 , 2‐({4‐[6,7‐dihydrothieno[3,2‐c] pyridin‐5(4H)‐ylsulfonyl]phenylimino}methyl)‐5‐(methoxy)phenol, x = 2; L 3 , 5‐chloro‐2‐({4‐[6,7‐dihydrothieno[3,2‐c]pyridin‐5(4H)‐ylsulfonyl]phenylimino}methyl)phenol, x = 2; and L 4 , 5‐bromo‐4‐chloro‐2‐({4‐[6,7‐dihydrothieno[3,2‐c]pyridin‐5(4H)‐ylsulfonyl]phenylimino} methyl)phenol, x = 1] was investigated. They were characterized by elemental analysis, IR, 1H‐NMR, 13C‐NMR and electronic spectra, magnetic measurements and thermal studies. The FAB‐mass spectrum of [Cu(II)( L 1 )2(H2O)2]H2O was determined. A magnetic moment and reflectance spectral study revealed that an octahedral geometry could be assigned to all the prepared complexes. Ligands (Ln) and their metal complexes were screened for their in vitro antibacterial activity against Bacillus subtillis, Pseudomonas aeruginosa, Escherichia coli and Serratia marcescens bacterial strains. Kinetic parameters such as order of reaction (n), the energy of activation (Ea), the pre‐exponential factor (A), the activation entropy (ΔS), the activation enthalpy (ΔH) and the free energy of activation (ΔG) are reported. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The kinetics of the interaction of L ‐asparagine with [Pt(ethylenediamine)(H2O)2]2+ have been studied spectrophotometrically as a function of [Pt(ethylenediamine)(H2O)22+], [L ‐asparagine], and temperature at pH 4.0, where the substrate complex exists predominantly as the diaqua species and L ‐asparagine as the zwitterion. The substitution reaction shows two consecutive steps: the first step is the ligand‐assisted anation and the second one is the chelation step. Activation parameters for both the steps have been calculated using Eyring equation. The low ΔH1 (43.59 ± 0.96 kJ mol?1) and large negative values of ΔS1 (?116.98 ± 2.9 J K?1 mol?1) as well as ΔH2 (33.78 ± 0.51 kJ mol?1) and ΔS2 (?221.43 ± 1.57 J K?1 mol?1) indicate an associative mode of activation for both the aqua ligand substitution processes. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 252–259, 2003  相似文献   

19.
Summary Eighteen new coordination compounds are reported with diglyme (dgm) and pentaglyme (pgm) as ligands:viz. [M(dgm)2](SbCl6)2 with M=MgII, CaII, SrII, MnII, FeII, CoII, NiII, CuII, and ZnII; [M(pgm)](SbCl6)2 with M=MnII, FeII,CoII, NiII, CuII, and ZnII; and [M(pgm)](SbCl6)2 · H2O with M=MgII, CaII, and SrII. The metal(II) ions are hexacoordinated by the ether-oxygens of two diglyme molecules or of one pentaglyme molecule. The coordinated diglyme molecules are in the TGTT¯GT conformation.  相似文献   

20.
Three-membered ring (3MR) forming processes of X(SINGLE BOND)CH2(SINGLE BOND)CH2(SINGLE BOND)F and CH2(SINGLE BOND)C((SINGLE BOND)Y)(SINGLE BOND)CH2(SINGLE BOND)F (X(DOUBLE BOND)CH2, O, or S and Y(DOUBLE BOND)0 or S) through a gas phase neighboring group mechanism (SNi) are studied theoretically using the ab initio molecular orbital method with the 6–31+G* basis set. When electron correlation effects are considered, the activation (ΔG) and reaction energies (ΔG0) are lowered by ca. 10 kcal mol−1, indicating the importance of the electron correlation effect in these reactions. The contribution of entropy of activation (−TΔS) at 298 K to ΔG is very small, and the reactions are enthalpy controlled. The ΔG and ΔG0 values for these ring closure processes largely depend on the stabilities of the reactants and the heteroatom acting as a nucleophilic center. The Bell–Evans–Polanyi principle applies well to all these reaction series. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1773–1784, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号