首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Eucalyptus grandis sawdust, a major waste from the growing Uruguayan wood industry, was used in previous work to prepare powdered activated carbon (PAC). In the present work, granular activated carbon (GAC) was prepared by mixing PAC, carboxymethyl cellulose as a binder, and kaolin as reinforcer. Ultimate analysis and surface characterization of GAC and PAC were performed. Phenol adsorption was used as a way to compare the characteristics of different PAC and GAC preparations. Kinetics and isotherms of the different GAC and PAC were performed in a shaking bath at 100 rpm and 298 K. Phenol concentrations were determined by UV spectroscopy. Some kinetics parameters were calculated; from kinetics results, external resistance to mass transfer from the bulk liquid can be neglected as the controlling step. Isotherms were fitted to Langmuir and Freundlich models, and corresponding parameters were determined. Maximum phenol uptakes for all carbons were determined and correlated with carbon characteristics. Thermogravimertic analysis (TGA) determinations were performed in order to study adsorption characteristics and conditions for GAC regeneration after its use. The results showed that phenol is preferentially physisorbed on the carbon of the granules, though some chemisorption was detected. No adsorption was detected in the kaolin-carboxymethyl cellulose mixture.  相似文献   

2.
A homogeneous layer of nano-sized magnetite particles (<4 nm) was synthesized by impregnation of modified granular activated carbon (GAC) with ferric chloride, for effective removal of phosphate. A proposed mechanism for the modification and formation of magnetite onto the GAC is specified. BET results showed a significant increase in the surface area of the matrix following iron loading, implying that a porous nanomagnetite layer was formed. Batch adsorption experiments revealed high efficiency of phosphate removal, by the newly developed adsorbent, attaining maximum adsorption capacity of 435 mg PO(4)/g Fe (corresponding to 1.1 mol PO(4)/mol Fe(3)O(4)). It was concluded that initially phosphate was adsorbed by the active sites on the magnetite surface, and then it diffused into the interior pores of the nanomagnetite layer. It was demonstrated that the latter is the rate-determining step for the process. Innovative correlation of the diffusion mechanism with the unique adsorption properties of the synthesized adsorbent is presented.  相似文献   

3.
A wide range of products are produced in the chemical producing industry such as textile dyes, chemicals, printing dyes and chemicals, paper chemicals, electrostatic powder dyes, and optical brighteners. The aim of this study is to investigate the treatability of chemical oxygen demand (COD), aromaticity, and color in the wastewater of this sector, where highly complex chemicals are used. Most of the studies in the literature are related to the treatment of synthetically prepared dyed wastewater. This study is important as it is carried out with real wastewater and gives results of many treatment methods. In the study, COD, UV-vis absorbance, and color values were attempted to be removed from the wastewater of a chemical producing industry that was pretreated by coagulation-flocculation. The COD value of the pretreated wastewater discharged to the central treatment system was restricted as 1000 mg/L. Pretreated wastewater characterization is as follows: COD: 2117 mg/L, UV-vis absorbance values at; 254 nm: 9.91, 280 nm: 8.65, 341 nm: 12.77, 436 nm: 5.01, 525 nm: 2.24, and 620 nm: 1.59. In the study, adsorption, ozonation, and advanced oxidation processes (Fenton and persulfate oxidation) were used to remove COD and UV-vis absorbance values (aromaticity, organics, and color). The method by which the best removal efficiency was obtained for all parameters was the adsorption process using powdered activated carbon (PAC). The equilibrium PAC dose was found as 6 g/L. At this adsorbent dose, the removal efficiencies of UV-vis absorbance values were all around 99% and the efficiency of COD removal was 77%. The Langmuir isotherm constants were found to be qmax= 30.4 mg/g and KL = 487.9 (L/mg). The COD concentration at this adsorbent dose was 486 mg/L and wastewater was suitable for discharge to the central wastewater treatment plant in that region.  相似文献   

4.
The adsorption behavior of activated carbon (AC) prepared from the residue of diosgenin by-product was characterized. The adsorption capacities of AC such as iodine, phenol and methylene blue (MB) are 933.28, 145.38 and 165 mg/g, respectively. The results of MP analysis and BJH method show AC has developed micropore and mesopore volumes, which are 0.1621 and 0.2623 cm3/g respectively, with the mean pore diameter of 1.49 nm. Comparison of the liquid phase adsorption capacities of AC to the standard activated carbon (SAC) and the commercial activated carbon (CAC) for wastewater treatment showed AC was superior to SAC and CAC. Experiments on phenol and MB adsorption and COD and chroma removal from diosgenin wastewater were carried out under different conditions of contact time, temperature, concentration, adsorbent dose and pH. The removal of COD and chroma of 10-multiple wastewater is 92.46 mg/g and 88 %, respectively. Adsorption parameters for the Langmuir and Freundlich isotherm models were determined. At lower temperatures, the data for phenol and COD fitted Freundlich model better than Langmuir model and vise versa for MB and chroma. Adsorption followed second-order kinetics. The study proves that AC prepared from the residue of diosgenin by-product can be used as adsorbent for the treatment of diosogenin wastewater as a cost-effective approach of resource recycle of Discorea zingiberensis C.H. Wright.  相似文献   

5.
Compliances with stringent effluent discharge limits imposed by environmental protection agencies (EPA) and the most economic way of achieving it without loss of production has led to continued refinement, recognition and development of promising wastewater treatment technologies. Many organic compounds present in industrial and domestic wastewaters are carcinogenic in nature. Removal of these organic compounds from wastewater has become a great challenge to wastewater treatment technologies, as many of them are non‐biodegradable in nature. Adsorption on granular activated carbon (GAC) has emerged an efficient and economically viable technology for removal of final traces of a broad spectrum of toxic organic compounds from domestic and industrial wastewater. In the present investigation adsorption of some priority organic pollutants, namely phenol, o‐cresol, p‐nitrophenol, m‐methoxyphenol, benzoic acid and salicylic acid on granular activated carbon, was studied in a batch system at laboratory scale. Experiments were carried out to determine adsorption isotherms and kinetics for adsorbate when present in aqueous solutions as single, bi‐ and tri‐solute systems. The commercially available bituminous coal based granular activated carbon Filtrasorb 300 (F‐300) was used as adsorbent. The results indicate that p‐nitrophenol is most strongly adsorbed as compared to other phenols studied. Aqueous phase solubility of the adsorbate plays a deciding role in multi‐component systems as more hydrophobic p‐nitrophenol adsorbs to a greater extent than less hydrophobic phenol, o‐cresol and m‐methoxyphenol. The preferential adsorption of strongly adsorbable solute over a weakly adsorbable one has been observed, as the solutes are competing for the available surface area of the adsorbent for adsorption.  相似文献   

6.
Waste material (carbon slurry), from fuel oil-based generators, was used as adsorbent for the removal of two reactive dyes from synthetic textile wastewater. The study describes the results of batch experiments on removal of Vertigo Blue 49 and Orange DNA13 from synthetic textile wastewater onto activated carbon slurry. The utility of waste material in adsorbing reactive dyes from aqueous solutions has been studied as a function of contact time, temperature, pH, and initial dye concentrations by batch experiments. pH 7.0 was found suitable for maximum removal of Vertigo Blue 49 and Orange DNA13. Dye adsorption capacities of carbon slurry for the Vertigo Blue 49 and the Orange DNA13 were 11.57 and 4.54 mg g(-1) adsorbent, respectively. The adsorption isotherms for both dyes were better described by the Langmuir isotherm. Thermodynamic treatment of adsorption data showed an exothermic nature of adsorption with both dyes. The dye uptake process was found to follow second-order kinetics.  相似文献   

7.
A study was made on the adsorption kinetics and thermodynamics of methylene blue(MB) and acid blue 80(AB80) onto powder of activated carbon(PAC) prepared by chemical method from dry potato residue(DPR). The PAC was characterized by N2 adsorption-desorption isotherms analysis and scanning electron microscopy. The ma- ximum adsorption capacities of PAC for MB and AB80 at 303 K are 532.19 and 156.22 mg/g, respectively. The results indicate that the adsorption kinetics of the selected dyes on PAC is well-described by the pseudo-second order model. And their thermodynamic data were analyzed via the isotherms of Langmuir, Freundlich, Redlich-Peterson, Toth and Sips, and the thermodynamic parameters were calculated. The results show that PAC is a fast and effective adsorbent for removing the cationic dyes from aqueous solutions.  相似文献   

8.
We propose a novel kinetic model for adsorption of aqueous benzene onto both granular activated carbon (GAC) and powdered activated carbon (PAC). The model is based on mass conservation of benzene coupled with three-stage adsorption: (1) the first portion for an instantaneous stage or external surface adsorption, (2) the second portion for a gradual stage with rate-limiting intraparticle diffusion, and (3) the third portion for a constant stage in which the aqueous phase no longer interacts with activated carbon. An analytical solution of the kinetic model was validated with the kinetic data obtained from aqueous benzene adsorption onto GAC and PAC in batch experiments with two different solution concentrations (C(0)=300 mg L(-1), 600 mg L(-1)). Experimental results revealed that benzene adsorption for the two concentrations followed three distinct stages for PAC but two stages for GAC. The analytical solution could successfully describe the kinetic adsorption of aqueous benzene in the batch reaction system, showing a fast instantaneous adsorption followed by a slow rate-limiting adsorption and a final long constant adsorption. Use of the two-stage model gave incorrect values of adsorption coefficients in the analytical solution due to inability to describe the third stage.  相似文献   

9.
Loris Pietrelli 《Adsorption》2013,19(5):897-902
Poly(ethylene glycol) (PEG) is a water-soluble polymer commonly found in industrial and domestic wastewaters. In this study the adsorption onto granular activated carbon (GAC) of PEG, of different molecular weights, from aqueous solutions was examined to evaluate its applicability to wastewater treatment. Batch kinetic models have been tested to predict the rate constant of adsorption. The amount of PEG adsorbed on activated carbon depends mainly on the pH, the MW and on the solution characteristics. The adsorption at fixed temperature decrease by MW (PEG-8000 < PEG-3350 < PEG-1450) a polymer chain conformation modification can explain these effect. The large values of adsorption capacity (>350 mg/g) at low and high pH values show a great potential for GAC. The adsorption process can be described well with the Langmuir and the pseudo first order equation. The effective intraparticle diffusion coefficients of PEG molecules in the GAC adsorbent varying according to the MW values in the range 8.45 × 10?3–9.71 × 10?7.  相似文献   

10.
Methyl tertiary butyl ether (MTBE) is an organic compound thatis used to increase the gasoline octane number. At the beginning of 1980s, by discovering the undesirable effects of tetra ethyl lead usage in fuel, MTBE began to be used worldwide. But gradually the undesirable effects of MTBE on environment had been revealed. Adsorption is the most conventional and economical technology for MTBE removal from polluted water. In this research, some experiments have been done for studying the adsorption of MTBE on different solid adsorbent in continuous processes. In continuous experiments, the water polluted with known initial MTBE concentration passes through an adsorption column containing two kinds of adsorbent including granular activated carbon (GAC), powdered activated carbon (PAC). By measuring MTBE concentration in exit flow at different times the effect of different operating parameters such as temperature, pH, and flow rate have been studied and the optimum condition have been determined. The batch experimental results have been used to calculate the constant parameters of Langmuir adsorption isotherm equations. A dynamic simulation of MTBE adsorption on activated carbon in an adsorption column has been proposed. The comparison of the experimental data with the values given by the proposed model for similar operating conditions, verifies the accuracy of the proposed mathematical model.   相似文献   

11.
Global attention is increasingly focused on the adverse health and environmental impacts of textile dyes, marking the necessity for effective and sustainable dye remediation strategies in industrial wastewater. This study introduces a novel, eco-friendly activated carbon produced from olive stones (OLS), a readily available by-product of the olive oil industry. The OLS was chemically activated with H3PO4 and KOH, creating two materials: OLS-P and OLS-K, respectively. These were then utilized as cost-effective adsorbents for the removal of methylene blue (MB) dye. The activated materials were characterized via X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), iodine number, and pHpzc analysis, with the zero-point charge determined as approximately pH 1 for OLS-P and pH 8 for OLS-K. Batch adsorption experiments conducted at various temperatures revealed that adsorption process followed the pseudo-second-order kinetic model and the Langmuir isotherm model. Temperature was found to significantly impact adsorption performance, with OLS-K demonstrating a substantial increase in adsorption capacity (qe) from 6.27 mg/g at 23˚C to 94.7 mg/g at 32 ˚C. Conversely, OLS-P displayed a decrease in qe from 16.78 mg/g at 23 ˚C to 3.67 mg/g at 32 ˚C as temperature increased. The study highlights the potential of KOH-treated olive stones as a promising, cost-efficient adsorbent for methylene blue remediation from wastewater.  相似文献   

12.
Adsorption of phenolic compounds on low-cost adsorbents: A review   总被引:11,自引:0,他引:11  
Adsorption techniques are widely used to remove certain classes of pollutants from wastewater. Phenolic compounds represent one of the problematic groups. Although commercial activated carbon is a preferred adsorbent for phenol removal, its widespread use is restricted due to the high cost. As such, alternative non-conventional adsorbents have been investigated. The natural materials, waste materials from industry and agriculture and bioadsorbents can be employed as inexpensive adsorbents. The review (i) presents a critical analysis of these materials; (ii) describes their characteristics, advantages and limitations; and (iii) discusses the various mechanisms involved. There are several issues and drawbacks concerned on the adsorption of phenolic compounds that have been discussed in this review article. It is evident from the review that low-cost adsorbents have demonstrated high removal capabilities for certain phenolic compounds. In particular, industrial waste might be a promising adsorbent for environmental and purification purposes.  相似文献   

13.
Source water pollution by agricultural chemicals poses great threat to drinking water safety and the removal of such contaminants is a challenge to the water treatment industry. In this work, the adsorption behaviors of methyl parathion (MP) from different natural waters onto different kinds of powdered activated carbons (PAC) were investigated systematically. On the basis of the characterization of the PACs and natural organic matter (NOM), the suitability of PAC with NOM for effective removal of MP was proposed, and the effect of competitive adsorption on MP removal under two PAC dosing patterns was evaluated. The results indicated that NOM adsorption was dependent on the molecular weight (MW) distribution of organic compounds and the pore size distribution of PAC. The mesopore surface area with pore size>3 nm was dominant for the adsorption of the NOM fraction in the range of 500 Da<MW<3000 Da. Competition for adsorption sites by smaller MW NOM had significant effect on the adsorption of target organic compound in the simultaneous adsorption pattern. Whereas in the NOM-preloaded adsorption pattern, pore blockage by relatively larger MW NOM resulted in markedly reduction in both adsorption capacity and adsorption kinetics, the diffusion rate of MP on PAC could be affected by the PAC dosage, pore size distribution and the MW distribution of NOM.  相似文献   

14.
Aqueous 1,1,2-trichloroethene (TCE) adsorption isotherms were obtained on Ambersorb 563 and 572 adsorbents and Filtrasorb 400 granular activated carbon (GAC). The data for Ambersorb 563 adsorbent covers TCE concentrations from 0.0009 to 600 mg/L. The data for each adsorbent was fit to 15 isotherm equations to determine an optimum equation.The best equation for the TCE adsorption isotherms is the Dubinin-Astakov (DA) isotherm. The DA isotherm coefficients were used to estimate the TCE micropore volume and the adsorption potential distribution. For each adsorbent, the TCE micropore volume is equivalent to the N2 porosimetry micropore volume. The mean adsorption potential is 18.8, 13.0, and 8.9 kJ/mol, with coefficients of variation of 0.37, 0.53, and 0.67, for Ambersorb 563 and 572 adsorbents and Filtrasorb 400 GAC, respectively. Thus, Ambersorb 563 adsorbent has the most energetic and most homogeneous adsorption volume, while Filtrasorb 400 GAC has the least energetic and most heterogeneous adsorption volume. For these reasons, Ambersorb 563 adsorbent has the highest TCE capacity at low concentrations, whereas Filtrasorb 400 GAC has the highest TCE capacity at high concentrations. The performance of Ambersorb 572 adsorbent is generally intermediate to the other two adsorbents.  相似文献   

15.
Dyestuff production units and dyeing units have always had a pressing need for techniques that allow economical pretreatment for color in the effluent. The effectiveness of adsorption for dye removal from wastewaters had made it an ideal alternative to other expensive treatment options. This paper deals with an investigation on alunite, existing wide reserves in Türkiye and in the world, for dye removal. Calcined alunite was utilized for this study and its performance evaluated against that of granular activated carbon (GAC). The use of calcined alunite for the removal of Acid Blue 40 and Acid Yellow 17 (AB 40 and AY 17) from aqueous solution at different calcination temperature and time, particle size, pH, agitation time and dye concentration has been investigated. The adsorption followed by Langmuir and Freundlich isotherms. The process follows first order adsorption rate expression and the rate constant was found to be 7.65 × 10–2 and 5.74 × 10–2 min–1 for adsorption of AB 40 and AY 17 on calcined alunite, and 8.41 × 10–2 and 10.04 × 10–2 min–1 for adsorption of AB 40 and AY 17 on GAC, respectively. The equilibrium saturation adsorption capacities were 212.8 mg dye/g calcined alunite and 151.5 mg dye/g calcined alunite for AB 40 and AY 17, respectively. The adsorption capacities were found to be 57.47 mg and 133.3 mg dye per g of GAC for AB 40 and AY 17, respectively. The results indicate that, for the removal of acid dye, calcined alunite was most effective adsorbent, although comparable dye removals were exhibited by GAC.  相似文献   

16.
Preparation, characterization and industrial application of a mixed matrix membrane (MMM) using powdered activated carbon (PAC) in cellulose acetate phthalate (CAP) have been reported in this study. The objective of this work is to fabricate a less energy intensive, highly selective (to phenolic compounds) adsorptive membrane with high throughput in a scalable platform for simultaneous removal of organic as well chemical oxygen demand (COD) from a steel plant effluent. The membrane with 25 wt% PAC has maximum adsorption capacity of phenol 35 mg/g at pH 5.5. Effluent with total phenolic compounds (23 mg/g) and COD of 5200 mg/l is treated in continuous cross‐flow configuration. Breakthrough time is 44 hr for a filtration area of 0.008 m2 with total phenol concentration in permeate as per World Health Organization (WHO), 1 mg/l. Throughput of the system is high, 40 l/m2 hr at transmembrane pressure drop 276 kPa and cross‐flow rate 20 l/hr. Maximum rejection of phenol is obtained at low pressure and cross‐flow rate. Removal of phenolic compounds is achieved by adsorption by PAC in CAP matrix and satisfactory reduction of COD and complete removal of non‐volatile solids are due of sieving mechanism. A simple chemical regeneration method is proposed to recover the permeate flux beyond 90%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Dodecyltrimethylammonium bromide-modified bentonite (DTMA-bentonite) was prepared and tested as an adsorbent for an acid dye (Acid Blue 193, AB193) removal from aqueous solution in comparison with Na-bentonite. The effect of various experimental parameters was investigated using a batch adsorption technique. In this manner, the adsorption isotherms, adsorption kinetics, and temperature and pH effects upon Acid Blue 193 adsorption on Na-bentonite and DTMA-bentonite were thoroughly examined. Results show that a pH value of 1.5 is favorable for the adsorption of Acid Blue 193. The isothermal data could be well described by the Freundlich equation. The dynamical data fit well with the pseudo-second-order kinetic model. The adsorption capacity of DTMA-bentonite (740.5 mg g(-1)) was found to be around 11 times higher than that of Na-bentonite (67.1 mg g(-1)) at 20 degrees C. Thermodynamic parameters such as activation energy (E(a)) and change in the free energy (DeltaG(0)), the enthalpy (DeltaH(0)), and the entropy (DeltaS(0)) were also evaluated. The overall adsorption process was exothermic but it is only spontaneous at 20 degrees C. The results indicate that Na-bentonite and DTMA-bentonite could be employed as low-cost alternatives to activated carbon in wastewater treatment for the removal of color which comes from textile dyes.  相似文献   

18.
The objective of this study was to analyze the role played by two components of natural organic matter (NOM), gallic acid (GAL) and humic acid (HUM), in the removal of the surfactant sodium dodecylbenzenesulfonate (SDBS) from waters by O(3)-based oxidation processes, i.e., O(3)/H(2)O(2), O(3)/granular activated carbon (GAC), and O(3)/powdered activated carbon (PAC). It was found that the presence of low concentrations of these compounds (1 mg/L) during SDBS ozonation increases both the ozone decomposition rate and the rate of SDBS removal from the medium. Because of the low reactivity of SDBS with ozone, these effects are mainly due to an increase in the transformation rate of ozone into HO(*) radicals. Results obtained demonstrate that the presence of GAL and HUM during SDBS ozonation increases the concentration of O(2)(-*) radicals in the medium, confirming that GAL and HUM act as initiating agents of ozone transformation into HO(*). It was also found that this effect was smaller with a larger molecular size of the acid. Presence of GAL and HUM during SDBS removal by O(3)/H(2)O(2), O(3)/GAC, and O(3)/PAC systems also increases the SDBS degradation rate, confirming the role of these compounds as initiators of ozone transformation into HO(*) radicals.  相似文献   

19.
利用磷酸活化法制备油茶果壳活性炭,并将其作为吸附剂用于去除水溶液中的Cr(Ⅵ),同时探讨了不同参数(Cr(Ⅵ)的初始浓度、吸附剂的用量、pH、温度等)对油茶果壳活性炭吸附Cr(Ⅵ)的影响。结果表明:当温度为293 K,Cr(Ⅵ)初始浓度为250 mg/L,pH为2.0时,Cr(Ⅵ)的最大吸附量可达165.0 mg/L。根据吸附动力学原理,发现其吸附过程遵循拟二级动力学模型。Cr(Ⅵ)的去除程度随Cr(Ⅵ)初始浓度的升高而增加,且其平衡数据与Freundlich模型拟合良好。  相似文献   

20.
Textile effluents are major industrial polluters because of high color content, about 15% unfixed dyes and salts. The present paper is aimed to investigate and develop cheap adsorption methods for color removal from wastewater using waste materials activated carbon and activated rice husk-as adsorbents. The method was employed for the removal of Safranin-T and the influence of various factors such as adsorbent dose, adsorbate concentration, particle size, temperature, contact time, and pH was studied. The adsorption of the dye over both the adsorbents was found to follow Langmuir and Freundlich adsorption isotherm models. Based on these models, different useful thermodynamic parameters have been evaluated for both the adsorption processes. The adsorption of Safranin-T over activated carbon and activated rice husks follows first-order kinetics and the rate constants for the adsorption processes decrease with increase in temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号