首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previously developed additivity schemes for nonelectrolytes have been used to estimate and for tetraalkyl and tetraphenyl methanes in methanol and water. Corrections have been applied to the thermodynamic values of these model compounds to account for a variation in size of the central atom, and these were used to ascertain the effect of charge on and of alkyl and phenyl quaternary ions having N, P and B as central atoms. Investigations of R4NBr, (R=methyl to heptyl) salts show that the charge effect on and of R4N+ ions is large and relatively independent of ion size suggesting that the solvent molecules penetrate the ions. The ability to estimate and of the quaternary ions in the bromide salt solutions has made it possible to make ionic assignments with some confidence; (Br) has been evaluated as 19.7±2 and 30.2±7 cm3-mol–1 and (Br) as –83±7 and –68±30 J-K–1-mol–1 in methanol and water, respectively. The use of organic ions for making ionic assignments of and is critically examined and comparisons with other assignments are made. The scaled particle theory is employed to divide the heat capacities of electrolytes into cavity and interaction contributions.  相似文献   

2.
The solubility of oxygen has been measured in a number of electrolytes [(LiCl, KCl, RbCl, CsCl, NaF, NaBr, NaI, NaNO3, KBr, KI, KNO3, CaCl2, SrCl2, BaCl2, Li2SO4, K2SO4, Mn(NO3)3)] as a function of concentration at 25°C. The solubilities, mol (kg-H2O)–1, have been fitted to a function of the molality m (standard deviation < 3mol-kg–1)
where A and B are adjustable parameters and the activity coefficient of oxygen )O2) = [O2]0/[O2]. The limiting salting coefficient, k S = (ln / m)m=0 = A, was determined for all salts. The salting coefficients for the chlorides and sodium salts showed a near linear correlation with the crystal molar volume V cryst = 2.52 r 3. The salting coefficients determined from the Scaled Particle Theory were in reasonable agreement with the measured values. The activity coefficients of oxygen in the solutions have been interpreted using the Pitzer equation
where is a parameter that accounts for the interaction of O2 with cations (c) and anions (a) with molalities m a and m c, and accounts for interactions for O2 with the cation and anion pair (c-a). The and coefficients determined for the most of the ions are in reasonable agreement with the tabulations of Clegg and Brimblecombe. The values of for most of the ions are a linear function of the electrostriction molar volume (Velect = V0V cryst).  相似文献   

3.
Calculations are made of the thermal energy exchanges accompanying the anabolism of Saccharomyces cerevisiae of four substrates using the equations and . Contrary to a previous postulate cited in the Discussion, the free-energy changes accompanying anabolism are not zero, but can be either positive or negative. However, their magnitude with either sign is small compared to that of catabolism of the same substrates, so that even with free energy changes that are negative it is unlikely anabolism can be considered a spontaneous process.  相似文献   

4.
The solubility of rhodochrosite (MnCO3) at 25°C under constant carbon dioxide partial pressure p(CO2) was determined in NaCl solutions as a function of ionic strength I. The dissolution of MnCO3(s) for the reaction
has been determined as a function of pH. From these values, we have determined the equilibrium constant for the stoichiometric solubility of MnCO3(s) in NaCl solutions
These values have been fitted to the equation
with a standard error of = 0.1 with Iand concentrations in molalities. The extrapolated value of log K o sp(–10.3) in water is in good agreement with literature data (–10.1 to 10.8) determined in solutions of different composition and ionic strength. The measured values of the activity coefficient, T(Mn2+) and T(CO3 2–), have been used to estimate the stability constant for the formation of the MnCO3ion pair, K *(MnCO3 0). The value of K 0(MnCO3 0) calculated from the values of K *(MnCO3) by the Pitzer equation ( = 0.1) in this study (4.8 ± 0.1) is in reasonable agreement with literature data.  相似文献   

5.
Summary The oxidation of H2O2 by [W(CN)8]3– has been studied in aqueous media between pH 7.87 and 12.10 using both conventional and stopped-flow spectrophotometry. The reaction proceeds without generation of free radicals. The experimental overall rate law, , strongly suggests two types of mechanisms. The first pathway, characterized by the pH-dependent rate constant k s, given by , involves the formation of [W(CN)8· H2O2]3–, [W(CN)8· H2O2·W(CN)8]6– and [W(CN)8· HO]3– intermediates in rapid pre-equilibria steps, and is followed by a one-electron transfer step involving [W(CN)8·HO]3– (k a) and its conjugate base [W(CN)8·O]4– (k b). At 25 °C, I = 0.20 m (NaCl), the rate constant with H a =40±6kJmol–1 and S a =–151±22JK–1mol–1; the rate constant with H b =36±1kJmol–1 and S b =–136±2JK–1mol–1 at 25 °C, I = 0.20 m (NaCl); the acid dissociation constant of [W(CN)8·HO]3–, K 5 =(5.9±1.7)×10–10 m, with and is the first acid dissociation constant of H2O2. The second pathway, with rate constant, k f, involves the formation of [W(CN)8· HO2]4– and is followed by a formal two-electron redox process with [W(CN)8]3–. The pH-dependent rate constant, k f, is given by . The rate constant k 7 =23±6m –1 s –1 with and at 25°C, I = 0.20 m (NaCl).  相似文献   

6.
Densities for DMSO solutions of divalent transition metal perchlorates are reported. The partial molar volumes of the hexakis-(DMSO) cations are derived and discussed in terms of variation within the series. The ligand-field effect on the partial molar volume and enthalpy of solvation is demonstrated.  相似文献   

7.
The electromotive forces (emf) E A and E C of the following concentration cells with transference: respectively, together with the emfs E MAX of the corresponding double cell without transference: have been measured at KCl molalities m (m 1 fixed and m 2 varied, with m 2>m 1) approximately up to the KCl solubility limit in 12 solvent mixtures for the three aqueous–organic solvent systems (ethylene glycol+water), (acetonitrile + water), and (1,4-dioxane + water) up to 0.8 mass fraction of organic component. For all the cases explored, the E A vs. E MAX relation is linear over the whole KCl molality range. The ionic transference numbers t of KCl determined therefrom show a curvilinear dependence on the mass fraction of the organic component of the relevant solvent mixture and are found to fall in the range 0.52–0.48, viz., within ±4% of exact equitransference (t + = t = 0.5). In particular, KCl becomes exactly equitransferent (i.e., an ideal salt bridge) in aqueous mixtures with the following mass fractions of organic component: 0.4 ethylene glycol and 0.09 acetonitrile, as well as 0.12 methanol, and 0.08 and 0.34 ethanol from our recent work. Even if use of KCl as a salt bridge would be somewhat restricted by its limited solubility in high mass fractions of dioxane and acetonitrile and pending extension of investigation to other mixed-solvent systems, the above figures characterize KCl as a fairly good intersolvental salt bridge in electrochemistry, electroanalysis, and corrosion science.  相似文献   

8.
Polarized infrared spectra of adsorbates on NaCl(100) and MgO(100) single crystal cleavage planes reveal Davydov splittings, structures with adsorbate orientations and/or 2D-phase transitions, in concert with diffraction studies. CO2 on NaCl shows the sharpest adsorbate spectra known ( ).  相似文献   

9.
The enthalpies and entropies of evaporation of Al(CH3)3–Sn(CH3)4and Ga(CH3)3–Sn(CH3)4solutions were determined. It was established that solvates are formed in these systems and that the dissociation energies of specific interactions in them change in the following order: (10.3) > > > (4.08 kJ mol–1), (6.52) > (5.14) > > (4.08 kJ mol–1).  相似文献   

10.
The determination of the second dissociation constant of carbonic acid K 2 in 5, 15, and 25 mass% ethanol—water mixed solvents has been made using cell of the type:
at 5 to 45°C. From these data, thermodynamic quantities, dissociation enthalpy, and dissociation entropy were determined. The dependence of pK 2 on dielectric constant of the mixed solvents is discussed in term of the Beveridge model.  相似文献   

11.
The oxidation of H2NOH is first-order both in [NH3OH+] and [AuCl4 ]. The rate is increased by the increase in [Cl] and decreased with increase in [H+]. The stoichiometry ratio, [NH3OH+]/[AuCl4 ], is 1. The mechanism consists of the following reactions.
The rate law deduced from the reactions (i)–(iv) is given by Equation (v) considering that [H+] K a.
The reaction (iii) is a combination of the following reactions:
The activation parameters for the reactions (ii) and (iii) are consistent with an outer-sphere electron transfer mechanism.  相似文献   

12.
A high pressure UV-visible spectrophotometer was used to determine the dissociation constant of boric acid using an indicator technique. The measurements were made at 25°C and at ionic strengths of 0.1 and 1.0m over a pressure range of 1 to 2000 atm. Extrapolation to I=0 gave a thermodynamic dissociation constant of 5.16×10–10 at 1 atm. The pressure dependence yielded a partial molal volume change of –28.9 and –31.8 cm3-mol–1 and a compressibility change of –3.1 and –4.8×10–3 cm3-mol–1-atm–1 for the dissociation at I=0.1 and 1.0m, respectively. The association constant for the formation of the sodium borate ion pair was determined by comparing the acid constants in tetramethylammonium chloride to those in sodium chloride solutions. Extrapolation to I=0 yielded a KA for [NaB(OH)4] of 0.64 at 1 atm. The pressure dependence of KA gave and for the formation of the ion pair.  相似文献   

13.
Excess molar volumes for binary mixtures of acetonitrile + dichloromethane, acetonitrile + trichloromethane, and acetonitrile + tetracloromethane at 25°C have been used to calculate partial molar volumes , excess partial molar volumes , and apparent molar volumes of each component as a function of composition. The V m Evalues are negative over the entire composition range for the systems studied. The applicability of the Prigogine–Flory–Patterson theory was explored. The agreement between theoretical and experimental results is satisfactory for the systems with dichloromethane and tetrachloromethane. For the unsymmetrical behavior of the system with trichloromethane, however, the agreement is poor.  相似文献   

14.
Summary The mechanical properties of the most aluminium alloys depend strongly on their chemical composition, casting methods and the heat treatment. Alloys of the type G-AlMg5Si are known for good corrosion resistance and mechanical properties at elevated temperatures. Under the trade mark Hydronalium (Hy 511) they are used for the production of cylinder heads for air-cooled Diesel engines. To obtain better chemical characteristics, titanium is added to the alloy. This paper deals with the results obtained during investigations about the distribution of elements in the binary eutectic Mg2Si and the ternary eutectic as well as with the distribution of titanium in samples of Hy 511, obtained during casting of cylinder heads. Studies of the distribution of the elements were performed using EDX/WDX spectrometers, and the distribution of titanium was studied also with Auger electron spectroscopy.  相似文献   

15.
The mechanism of the Co(II) catalytic electroreduction of water insoluble CoR2 salt in the presence of cysteine was developed. CoR2 = cobalt(II) cyclohexylbutyrate is the component of a carbon paste electrode. Electrode surface consecutive reactions are: (a) fast (equilibrium) reaction of the complex formation, (b) rate-determining reversible reaction of the promoting process of CoR(Ac+) complex formation, (c) rate-determining irreversible reaction of the electroactive complex formation with ligand-induced adsorption, and (d) fast irreversible reaction of the electroreduction. Reactions (a,b) connected with CoR2 dissolution and reactions (c,d) connected with CoR2 electroreduction are catalyzed by . Regeneration of (reactions “b,d”) and accumulation of atomic Co(0) (reaction “d”) take place. Experimental data [Sugawara et al., Bioelectrochem Bioenergetics 26:469, 1991]: i a vs E (i a is anodic peak, E is cathodic accumulation potential), i a vs , and i a vs pH have been quantitatively explained.  相似文献   

16.
Indium tin-oxide (ITO) and polycrystalline boron-doped diamond (BDD) have been examined in detail using the scanning electrochemical microscopy technique in feedback mode. For the interrogation of electrodes made from these materials, the choice of mediator has been varied. Using ferrocene methanol (FcMeOH), and approach curve experiments have been performed, and for purposes of comparison, calculations of the apparent heterogeneous electron transfer rates (k app) have been made using these data. In general, it would appear that values of k app are affected mainly by the position of the mediator reversible potential relative to the relevant semiconductor band edge (associated with majority carriers). For both the ITO (n type) and BDD (p type) electrodes, charge transfer is impeded and values are very low when using FcMeOH and as mediators, and the use of results in the largest value of k app. With ITO, the surface is chemically homogeneous and no variation is observed for any given mediator. Data is also presented where the potential of the ITO electrode is fixed using a ratio of the mediators and In stark contrast, the BDD electrode is quite the opposite and a range of k app values are observed for all mediators depending on the position on the surface. Both electrode surfaces are very flat and very smooth, and hence, for BDD, variations in feedback current imply a variation in the electrochemical activity. A comparison of the feedback current where the substrate is biased and unbiased shows a surprising degree of proportionality.Dedicated to Alan, a good friend and colleague on his 60th birthday.  相似文献   

17.
Apparent molar heat capacities C p, for 71 rare earth chlorides, nitrates, and perchlorates, alkaline earth and transition metal chlorides, nitrates, and perchlorates, and alkali metal carbonates and sulfates have been fitted to the Pitzer equation for heat capacities. The apparent molar heat capacities at infinite dilution (equal to the standard partial molar heat capacity, ) were used to evaluate a set of best ionic heat capacities, from which improved values of for the electrolytes were calculated. These were then used in the Pitzer equation to reevaluate the higher Pitzer coefficients. The Pitzer coefficients so evaluated can express, in most cases, the behavior of C p, within experimental error from infinite dilution to the upper limit of the data. Ionic heat capacities have been correlated with the absolute entropies of the ions by statistically assigning the ionic heat capacities to obtain the best linear fit.  相似文献   

18.
Luminescence Behavior of Polynuclear Alkynylcopper(I) Phosphines   总被引:1,自引:0,他引:1  
A series of soluble trinuclear and tetranuclear copper(I) complexes containing 3-l acetylides , and have been synthesized and shown to exhibit rich photoluminescent behavior at room temperature. The electrochemistry of the trinuclear Cu(I) acetylide complexes and the excited-state redox properties of have been investigated. The X-ray crystal structures of and have been determined.  相似文献   

19.
A correlation has been found between the ease of reduction of oxides, (where is the reciprocal of the absolute temperature at which reduction by hydrogen commences), and their catalytic activity in relation to the oxidation of hydrogen, propylene, methane and the dehydrogenation of isopropyl alcohol. In the oxidation of hydrogen, propylene, and methane, the catalytic activity in the series of oxides investigated increases with increase in ; in the cases of the oxidation of ammonia and naphthalene, the dependence of the catalytic activity on is represented by an inverted-V curve.  相似文献   

20.
Carbonate stability constants for yttrium and all rare earth elements have been determined at 25°C and 0.70 molal ionic strength by solvent exchange and inductively coupled plasma–mass spectrometry (ICP–MS). Measured stability constants for the formation of and from M3+ are in good agreement with previous direct measurements, which involved the use of radio-chemical techniques and trivalent ions of Y, Ce, Eu, Gd, Tb, and Yb. Direct ICP–MS measurements of and formation constants are also in general agreement with modeled stability constants for the metals La, Pr, Nd, Sm, Dy, Ho, Er, Tm, and Lu, based on linear-free energy relationship (LFER). The experimental procedures developed in this work can be used for assessing the complexation behavior of other geochemically important ligands such as phosphate, sulfate, and fluoride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号