首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gelatin was extracted from Alaska pollock (Theragra chalcogramma) and Alaska pink salmon (Oncorhynchus gorbuscha) skins and cast into films. The fish gelatin films’ tensile, thermal, water vapor permeability, oxygen permeability, and biodegradation properties were compared to those of bovine and porcine gelatin films. In addition, fish gelatin films were cross-linked with glutaraldehyde. Pollock and salmon gelatin films had comparable tensile properties, but had lower tensile strength and percent elongation than mammalian gelatin films. The lower strength and elongation might have been due to lower structural gelatin levels present in fish gelatin films. The addition of cross-linkers had little effect on tensile properties and melting temperatures of fish gelatin films. Pollock gelatin films had the lowest water vapor and oxygen permeability values, whereas mammalian gelatin films had the highest permeability values. Cross-linking resulted in lower water vapor permeability for salmon gelatin films and higher oxygen permeability for pollock gelatin films. However, all fish gelatin films had better water vapor and oxygen barrier properties than mammalian gelatin films. Also, fish gelatin films degraded faster than mammalian gelatin films.  相似文献   

2.
A novel chemical route has been established for the synthesis of ultraviolet luminescent turbostratic boron nitride (t-BN) powders, by the reaction of NH4BF4 with NaNH2 at 320 °C for 10 h, and the yield is as high as 90%. The synthesized brown-yellow samples were characterized by XRD, XPS, FT-IR, SAED, and HRTEM, which matched with t-BN. The electronic and optical properties of the product were investigated by PL and UV absorption. UV spectra revealed that the product has two obvious band gaps (∼5.8 and 4.6 eV) and PL spectra showed that it has an ultraviolet emission at 337 nm (). SEM image indicated that the particle size of the synthesized t-BN is mainly in the range of 1-10 μm. The renascent BF3 and Na3N intermediates are believed to be responsible for the growth of t-BN under mild conditions.  相似文献   

3.
Mesoporous BN was prepared at 550 °C for 10 h or so via a simple reaction between NaBH4 and CO(NH2)2. X-ray diffraction demonstrates the formation of t-BN with lattice constants a=2.46 and c=6.67 Å. High-resolution transmission electron microscopy displays a lot of porous films in the product, which possesses a high surface area of 219 m2 g−1 and a pore size primarily around 3.8 nm tested by nitrogen adsorption-desorption method. The mesoporous BN exhibits a strong luminescence emission around 3.41 eV in the cathodoluminescence spectra, a high stability in both morphology and structure, and good oxidation resistance up to 800 °C. The byproducts generated during the reaction are responsible for the formation of the mesoporous BN.  相似文献   

4.
C02-controlled assembly of conjugated polymer and boron nitride(BN) was fabricated via electrostatic and hydrophobic interactions between the BN fiber and conjugated polymer of PFBT containing fluorene units and 2,1,3-benzothiadiazole units.C02,an effective and green stimulus for regulating the assembly of PFBT and BN fibers,leads to an obvious fluorescence variation.Moreover,PFBT enables the assembly with the signal amplification and light-harvesting properties.This work provides a new triggeri...  相似文献   

5.
乙烯是最为重要的化工原料之一,目前其工业来源主要来自于烃类的水蒸汽裂解过程.该过程本质上是一个高温均相裂解过程,温度(>800?℃)高,能耗大,碳排放严重.乙烷氧化脱氢制乙烯属于放热反应,反应温度低,速率快,无积碳等限制,是一条更富有竞争力的工艺路线.然而,常用的金属或金属氧化物催化剂容易导致乙烯深度氧化,从而降低了乙烯选择性.纳米碳材料在烃类氧化脱氢反应中展现出一定的催化活性,但容易被氧化,难以用于反应温度高的乙烷氧化脱氢反应.本文报道了羟基化的氮化硼(BNOH)可高效催化乙烷氧化脱氢制乙烯.氮化硼边沿羟基官能团脱氢生成了动态活性位,从而引发了乙烷的脱氢反应.BNOH对乙烷氧化脱氢制乙烯显示出高选择性.当乙烷转化率在11%,乙烯选择性可高达95%;当乙烷转化率增加到40%,乙烯选择性保持在90%.重要的是,当乙烷转化率超过60%时,BNOH仍然可保持80%的乙烯选择性以及50%的乙烯收率.这些性能指标与现有工业乙烷水蒸气裂解过程运行性能相当.进一步优化反应条件,BNOH催化剂能够实现高达9.1 gC2H4 gcat-1 h-1的时空收率.经过200 h的氧化脱氢反应测试,BNOH催化剂活性和选择性基本恒定,表明其具有非常好的稳定性.X射线粉末衍射结果显示,反应前后BNOH催化剂的物相没有发生变化.透射电子显微镜测试证实,反应后BNOH催化剂的形貌和微观结构也没有明显改变.X射线光电子能谱结果显示,反应200 h后BNOH催化剂表面的氧含量仅从反应前的6.9 atom%微增到8.3 atom%.1H固体核磁共振谱测试显示,反应200 h后,BNOH催化剂上羟基含量无明显改变.结合原位透射红外光谱和同位素示踪实验,初步确定了BNOH催化剂上引发乙烷氧化脱氢反应的活性中心.氮化硼边沿的氧官能团并不能引发乙烷的氧化脱氢反应,而羟基官能团才是氧化脱氢反应发生的活性位.在乙烷氧化脱氢条件下,分子氧脱除羟基官能团上的氢原子动态生成BNO·?和HO2·?活性位.密度泛函理论计算表明,乙烷首先在BNO·?或HO2·?位活化生成乙基自由基,这些中间物进一步与气相氧物种发生反应脱氢生成乙烯.动力学测试结果也验证了上述实验和理论结果.  相似文献   

6.
Sample preparation still remains a great challenge in modern bioanalysis and the interest in new efficient solid phase extraction (SPE) materials still remains high. In this work, hexagonal boron nitride (h-BN) is introduced as a new SPE material for the isolation and enrichment of peptides. The h-BN is isoelectronic and structurally similar to graphite. It has remarkable properties including good thermal conductivity, excellent thermal and chemical stability and a better oxidation resistance than graphite. BN attracts increasing interest because of its wide range of applicability. In the present work, the great potential of h-BN, as a new SPE-material, on the enrichment, preconcentration and desalting of tryptic digest of model proteins is demonstrated. A special attention was dedicated to the efficient enrichment of hydrophilic phosphopeptides. Two elution protocols were developed for the enrichment of peptides compatible for subsequent MALDI-MS and ESI-MS analysis. In addition, the recoveries of 5 peptides and 3 phosphopeptides with wide range of pI values utilizing h-BN materials with different surface areas were investigated. 84–106% recovery rate could be achieved using h-BN materials. The results were compared with those obtained using graphite and silica C18 under the same elution conditions, and lower recoveries were obtained. In addition, h-BN was found to have a capability of protein depletion, which is requisite for the peptide profiling.  相似文献   

7.
The size-dependent phase diagram of BN was developed on the basis of the nanothermodynamic theory. Our studied results suggest that cubic BN (c-BN) is more stable than hexagonal BN (h-BN) in the deep nanometer scale and the triple point of c-BN, h-BN and liquid shifts toward the lower temperature and pressure with decreasing the crystal size. Moreover, surface stress, which is determined by the experimental conditions, is the main reason to influence the formation of c-BN nuclei. The developed phase diagram of BN could help us to exploit new techniques for the fabrication of c-BN nanomaterials.  相似文献   

8.
Poly[(methylamino)borazine] (PolyMAB) green fibers of a mean diameter of 15 μm have been pyrolyzed under ammonia up to 1000°C and heat treated under nitrogen up to 2000°C to prepare boron nitride (BN) fibers. During the polymer-to-ceramic conversion, the mechanical properties of the green fibers increase within the 25-400°C temperature range owing to the formation of a preceramic material and remain almost constant up to 1000°C. Both the crystallinity and the mechanical properties slightly increase within the 1000-1400°C range, in association with the consolidation of the fused-B3N3 basal planes. A rapid increase in tensile strength (σR) and elastic modulus (Young's modulus E) is observed in relation with crystallization of the BN phase for fibers treated between 1400°C and 1800°C. At 2000°C, “meso-hexagonal” BN fibers of 7.5 μm in diameter are finally obtained, displaying values of σR=1.480 GPa and E=365 GPa. The obtention of both high mechanical properties and fine diameter for the as-prepared BN fibers is a consequence of the stretching of the green fibers on a spool which is used during their conversion into ceramic.  相似文献   

9.
《先进技术聚合物》2018,29(9):2545-2552
Although hexagonal boron nitride (h‐BN) has presented a potential prospect in polymer composite fields, undesirable interfacial interaction with polymer matrix that generates serious aggregation of nanomaterials has suppressed its enhancement effect. Moreover, the chemically inert surface of h‐BN also makes the commonly used approach that improves the interfacial interaction between nanofillers and polymeric matrix invalid. Herein, the functionalized modification of chemically inert h‐BN was successfully fabricated by the adsorption of cetyl‐trimethylammonium bromide, with electrostatic interactions. The obtained h‐BN (cetyl‐trimethylammonium bromide‐BN) was well characterized by systematic tests and then added into thermoplastic polyurethane (TPU) matrix. The inclusion of functionalized h‐BN can dramatically improve thermal stability, flame retardant, and mechanical properties of TPU composites. With the incorporation of as low as 4.0 wt% nanofillers, maximal value of heat release rate and total heat release of TPU were reduced by 57.5% and 17.8%, compared with those of pure TPU, respectively. Moreover, tensile strength of TPU composite with a loading of 2.0 wt% was increased by 79.3% in comparison with that of neat TPU. The facile functionalized approach of chemically inert h‐BN paves the way for promising applications of h‐BN in the development of flame retardant polymer materials.  相似文献   

10.
石磊  王东琪  陆安慧 《催化学报》2018,39(5):908-913
页岩气的急速开采推动了以天然气替代石油的资源革命.除主组分甲烷外,天然气、页岩气中还包含大量乙烷、丙烷等低碳烷烃资源,将这些储量丰富的碳资源直接转化为烯烃等基础化学品有望革新以原油为基础的化学工业.现有烷烃催化脱氢制烯烃工艺中,直接脱氢过程吸热、热力学受限,且存在催化剂迅速失活的难题;而氧化脱氢是放热过程、无平衡限制,也无积碳等引发催化剂失活的问题,有利于提高反应效率、降低能耗,代表了更为高效和经济的新路线.但作为一个热力学爬坡过程,目前金属氧化物催化剂上烯烃产物很容易深度氧化到CO_2,选择性仍有待提高.非金属氮化硼能够有效活化低碳烷烃中的C-H键,促进烷烃氧化脱氢,并能够有效抑制深度氧化产物的生成,解决低碳烷烃临氧脱氢过程中产物易深度氧化的固有难题.本文综述了近期氮化硼在乙烷、丙烷、丁烷等低碳烷烃氧化脱氢制烯烃反应中的研究进展.以丙烷氧化脱氢为例,通过比较文献报道的几种氮化硼材料的氧化脱氢性能,发现羟基化氮化硼显示了最高的烯烃选择性和时空收率,以20.6%的丙烷转化率为基准,烯烃选择性超过90%,而时空收率可达6.8 golefin gcat~(-1) h~(-1).在此基础上,本文重点讨论了对于氮化硼材料催化活性起源的认识.主要实验事实和结论包括:氮化硼自身几乎没有氧化脱氢活性,而在烷烃氧化脱氢反应条件下存在活性诱导期;活性诱导期伴随着氮化硼边沿氧官能团化过程;氮化硼边沿B-O官能团没有脱氢活性,而B-OH官能团参与了氧化脱氢过程,辅助分子氧引发低碳烷烃脱氢反应;分子氧在羟基氮化硼边沿解离活化,反应过程中与边沿结构氧存在动态交换;氮化硼边沿羟基化定向合成过程可显著增强氧化脱氢反应活性.氮化硼作为一类新型烷烃氧化脱氢催化剂,目前正处于研究的初始阶段.因此,本文最后总结了一些关于氮化硼烷烃脱氢催化体系仍需深入研究的科学问题.  相似文献   

11.
We have investigated the effect of axial magnetic field on the band structure, dipole matrix elements and absorption spectrum in different energy ranges, using tight binding approximation. It is found that magnetic field breaks the degeneracy in the band structure and creates new allowed transitions in the dipole matrix which leads to creation of new peaks in the absorption spectrum. It is found that, unlike to CNTs which show metallic–semiconductor transition, the BNNTs remain semiconductor in any magnetic field strength. By calculation the diameter dependence of peak positions, we found that the positions of three first peaks in the lower energy region (E <5.3 eV) are proportional to n−2. In the middle energy region (7 < E < 7.5 eV) all (n, 0) zigzag BNNTs, with even and odd nanotube index, have two distinct peaks in the absence of magnetic field which these peaks may be used to identify zigzag BNNTs from other tube chiralities. For odd (even) tubes, in the middle energy region, applying the magnetic field leads to splitting of these two peaks into three (five) distinct peaks.  相似文献   

12.
Glass fabrics were used to fabricate boron nitride nanotubes (BNNTs) with a broad diameter range through a combined chemical vapor deposition and self-propagation high-temperature synthesis (CVD-SHS) method at different holding times (0min, 30min, 90min, 180min and 360min). SEM characterization has been employed to investigate the macro and micro structure/morphology changes of the glass fabrics and BNNTs in detail. SEM image analysis has provided direct experimental evidences for the rationality of the optimized self-cracking catalyst VLS growth mechanism, including the transformation situations of the glass fabrics and the BNNTs growth processes respectively. This paper was the further research and compensation for the theory and experiment deficiencies in the new preparation method of BNNTs reported in our previous work. In addition, it is likely that the distinctive self-cracking catalyst VLS growth mechanism could provide a new idea to preparation of other inorganic functional nano-materials using similar one-dimensional raw materials as growth templates and catalysts.  相似文献   

13.
This work explores the use of conformal nanoscale plasma coatings on the surface of boron nitride (BN) powders to control the rheological properties of BN/poly(dimethylsiloxane) (PDMS) composites. BN particles are conformally coated with hexafluoropropylene oxide (HFPO) in a tumbling RF-plasma reactor. Following the HFPO plasma treatment, XPS evidence indicates the presence of thin coating on the surface of the particles having a F:C ratio of 1.77. Filled BN/PDMS composites are investigated using oscillatory shear rheometry in the concentration range of 0.09-0.41 vol% (varphi). The addition of the plasma treated BN particles to the PDMS matrix reduces the complex viscosity by 40-60% when compared with equally loaded control samples across a broad concentration range. The frequency dependence of the maximum packing fraction (varphi(m)=0.38-0.42) is also observed for both treated and untreated particles. The maximum packing fraction does not appear to be significantly affected by the conformal plasma polymer treatment. The investigation has shown that the relative dynamic viscosity of the BN/PDMS can be described by the modified Mooney equation.  相似文献   

14.
A simple and green method is developed to prepare hexagonal boron nitride(h-BN)/poly(vinyl alcohol) (PVA) nanocomposites by using water as a common solvent of h-BN nanosheets and PVA.The obtained h-BN/PVA nanocomposites are highly transparent,and have significantly improved mechanical and thermal properties.They may outperform nano-clay and nano-alumina/PVA nanocomposites as flexible optoelectronic devices,optical windows and heat-releasing materials operated in oxidative or corrosive environment.  相似文献   

15.
The adsorptive potential of hexagonal boron nitride nanosheets (h-BNNSs) for solid-phase extraction (SPE) of pollutants was investigated for the first time. Seven indicators of polychlorinated biphenyls (PCBs) were selected as target analytes. The adsorption of PCBs on the surface of the h-BNNSs in water was simulated by the density functional theory and molecular dynamics. The simulation results indicated that the PCBs are adsorbed on the surface by π–π, hydrophobic, and electrostatic interactions. The PCBs were extracted with an h-BNNS-packed SPE cartridge, and eluted by dichloromethane. Gas chromatography–tandem mass spectrometry working in the multiple reaction monitor mode was used for the sample quantification. The effect of extraction parameters, including the flow rate, pH value, breakthrough volume, and the ionic strength, were investigated. Under the optimal working conditions, the developed method showed low limits of detection (0.24–0.50 ng L−1; signal-to-noise ratio = 3:1), low limits of quantification (0.79–1.56 ng L−1; signal-to-noise ratio = 10:1), satisfactory linearity (r > 0.99) within the concentration range of 2–1000 ng L−1, and good precision (relative standard deviation < 12%). The PCBs concentration in environmental water samples was determined by the developed method. This results demonstrate that h-BNNSs have high analytical potential in the enrichment of pollutants.  相似文献   

16.
The use of slurry sampling total reflection X-ray fluorescence spectrometry (SlS-TXRF) for the direct determination of Ca, Cr, Cu, Fe, Mn and Ti in four boron nitride powders has been described. Measurements of the zeta potential showed that slurries with good stabilities can be obtained by the addition of polyethylenimine (PEI) at a concentration of 0.1 wt.% and by adjusting the pH at 4. For the optimization of the concentration of boron nitride in the slurries the net line intensities and the signal to background ratios were determined for the trace elements Ca and Ti as well as for the internal standard element Ga in the case of concentrations of boron nitride ranging from 1 to 30 mg mL1. As a compromise with respect to high net line intensities and high signal to background ratios, concentrations of 5 mg mL1 of boron nitride were found suitable and were used for all further measurements. The limits of detection of SlS-TXRF for the boron nitride powders were found to range from 0.062 to 1.6 μg g– 1 for Cu and Ca, respectively. Herewith, they are higher than those obtained in solid sampling and slurry sampling graphite furnace atomic absorption spectrometry (SoS-GFAAS, SlS-GFAAS) as well as those of solid sampling electrothermal evaporation inductively coupled plasma optical emission spectrometry (SoS-ETV-ICP-OES). For Ca and Fe as well as for Cu and Fe, however, they were found to be lower than for GFAAS and for ICP-OES subsequent to wet chemical digestion, respectively. The universal applicability of SlS-TXRF to the analysis of samples with a wide variety of matrices could be demonstrated by the analysis of certified reference materials such as SiC, Al2O3, powdered bovine liver and borate ore with a single calibration. The correlation coefficients of the plots for the values found for Ca, Fe and Ti by SlS-TXRF in the boron nitride powders as well as in the before mentioned samples versus the reference values for the respective samples over a concentration range from 2.5 to 1470 μg g– 1 were found to be 0.995, 0.991 and 0.997, respectively.  相似文献   

17.
An efficient method was reported to fabricate boron nitride (BN) nanosheets using a sonication–centrifugation technique in DMF solvent. Then non‐covalent functionalization and covalent functionalization of BN nanosheets were performed by octadecylamine (ODA) and hyperbranched aromatic polyamide (HBP), respectively. Then, three different types of epoxy composites were fabricated by incorporation of BN nanosheets, BN‐ODA, and BN‐HBP. Among all three epoxy composites, the thermal conductivity and dielectric strength of epoxy composites using BN‐HBP nanosheets display the highest value, efficiently enhancing to 9.81 W/m K at 50 vol% and 34.8 kV/mm at 2.7 vol% (increase by 4057% and 9.4% compared with the neat epoxy), respectively. The significantly improved thermal conductivity and dielectric strength are attributed to the large surface area, which increases the contact area between nanosheets and nanosheets, as well as enhancement of the interfacial interaction between nanosheets and epoxy matrix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, based on the density functional theory, the interaction of vitamins A, B1, C, B3 and D with (5, 5) armchair and (9, 0) zigzag single-walled boron nitride nanotubes (BNNTs) are studied. It is found that binding of vitamins A, B1, C, B3 and D with (9, 0) and (5, 5) BNNTs is thermodynamically favorable. Calculated solvation energies show that the solubility of functionalized (9, 0) BNNTs is higher than that of functionalized (5, 5) BNNT, and both dissolutions in water are spontaneous. The results showed that BNNTs can act as a suitable drug delivery vehicle for vitamins A, B1, C, B3 and D within biological systems. This study may provide a new insight into the development of the functionalized boron nitride nanotubes as drug delivery systems for virtual applications.  相似文献   

19.
High‐performance insulating materials have been increasingly demanded by many cutting‐edge fields. A new kind of high‐performance composites with high thermal conductivity, low coefficient of thermal expansion (CTE), and low dielectric loss was successfully developed, consisting of hexagonal boron nitride (hBN) and 2,2′‐diallylbisphenol A (DBA)‐modified 4,4′‐bismaleimidodiphenylmethane (BDM) resin. The effects of hBN and its content on the integrated properties, including curing behavior of uncured system, the CTE, thermal conductivity, dielectric properties, and thermal resistance of cured composites, are systematically investigated and discussed. Results show that there are amino groups on the surface of hBN, which supply desirable interfacial adhesion between hBN and BDM/DBA resin and a good dispersion of hBN in the resin. With the increase of the hBN content, the thermal conductivity increases linearly, whereas the CTE value decreases linearly; in addition, dielectric loss gradually decreases and becomes more stable over the whole frequency from 10 to 109 Hz. In the case of the composite with 35 wt% hBN, its thermal conductivity, CTE in glassy state, and dielectric loss are about 3.3, 0.63, and 0.5 times of the corresponding value of BDM/DBA resin, respectively. These attractive integrated properties suggest that hBN/BDM/DBA composites are high‐performance insulating materials, which show great potential in applications, especially for electronics and aerospace industries. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Nanocrystalline boron nitride (BN) with needle-like and hollow spherical morphology has been synthesized by nitriding of MgB2 with NH4Cl and NH4Cl-NaN3, respectively. The amount of NaN3 has an obvious effect on the size of the hollow spheres. The samples were characterized by X-ray powder diffraction, Fourier transformation infrared spectroscopy, X-ray photoelectron spectra, and transmission electron microscopy. The possible mechanism of morphology control is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号