首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 501 毫秒
1.
提出了拉格朗日高阶中心型守恒气体动力学格式。用产生于当前时刻子网格密度和当前时刻网格声速的子网格压力构造了子网格力,用加权本质无震荡方法构造的高阶子网格力构造了高阶空间通量,借助时间中点通量的泰勒展开完成了高阶时间通量离散,利用动量守恒条件使得格点速度以与网格面的数值通量相容的方式计算。编制了拉格朗日高阶中心型守恒气体动力学格式,对Saltzman活塞问题进行了数值模拟,数值结果表明,拉格朗日高阶中心型守恒气体动力学格式的有效性和精确性.  相似文献   

2.
Well-resolved two-dimensional numerical simulations of the unsteady separated flow past a normal flat plate at low Reynolds numbers have been performed using a fractional step procedure with high-order spatial discretization. A fifth-order upwind-biased scheme is used for the convective terms and the diffusive terms are represented by a fourth-order central difference scheme. The pressure Poisson equation is solved using a direct method based on eigenvalue decomposition of the coefficient matrix. A systematic study of the flow has been conducted with high temporal and spatial resolutions for a series of Reynolds numbers. The interactions of the vortices shed form the shear layers in the near-and far-wake regions are studied. For Reynolds numbers less than 250 the vortices are observed to convect parallel to the freestream. However, at higher Reynolds numbers (500 and 1000), complex interactions including vortex pairing, tearing and deformations are seen to occur in the far-wake region. Values of the drag coefficient and the wake closure length are presented and compared with previous experimental and numerical studies.  相似文献   

3.
An approximate projection scheme based on the pressure correction method is proposed to solve the Navier–Stokes equations for incompressible flow. The algorithm is applied to the continuous equations; however, there are no problems concerning the choice of boundary conditions of the pressure step. The resulting velocity and pressure are consistent with the original system. For the spatial discretization a high-order spectral element method is chosen. The high-order accuracy allows the use of a diagonal mass matrix, resulting in a very efficient algorithm. The properties of the scheme are extensively tested by means of an analytical test example. The scheme is further validated by simulating the laminar flow over a backward-facing step.  相似文献   

4.
In this paper we consider a discretization of the incompressible Navier-Stokes equations involving a second-order time scheme based on the characteristics method and a spatial discretization of finite element type. Theoretical and numerical analyses are detailed and we obtain stability results abnd optimal eror estimates on the velocity and pressure under a time step restriction less stringent than the standard Courant-Freidrichs-Levy condition. Finally, some numerical results obtained wiht the code N3S are shown which justify the interest of this scheme and its advantages with respect to an analogous first-order time scheme. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
采用流体体积分数的混合型多流体数值模型,将piecewise parabolic method (PPM)方法应用于可压缩多流体流动的数值模拟,拓展了以前提出的模型和数值方法,使它能够处理一般的Mie-Grneisen状态方程。采用双波近似和两层迭代算法求解一般状态方程的Riemann问题;并根据多流体接触界面无振荡原则设计高精度计算格式,对典型的纯界面平移问题可以从理论上证明本算法在接触间断附近压力和速度没有振荡,而且数值模拟结果表明界面数值耗散也被控制在2~3个网格之内。模拟了多种复杂的可压缩多流体流动,算例结果表明本文方法可以有效地处理接触间断、激波等物理问题,且具有耗散小精度高的特点。  相似文献   

6.
A high-order accurate explicit scheme is proposed for solving Euler/Reynolds-averaged Navier-Stokes equations for steady and unsteady flows, respectively. Baldwin-Lomax turbulence model is utilized to obtain the turbulent viscosity. For the explicit scheme, the Runge-Kutta time-stepping methods of third orders are used in time integration, and space discretization for the right-hand side (RHS) terms of semi-discrete equations is performed by third-order ENN scheme for inviscid terms and fourth-order compact difference for viscous terms. Numerical experiments suggest that the present scheme not only has a fairly rapid convergence rate, but also can generate a highly resolved approximation to numerical solution, even to unsteady problem. The project supported by the National Natural Science Foundation of China under Contract No. 59576007 and 19572038  相似文献   

7.
一类高精度TVD差分格式及其应用   总被引:2,自引:0,他引:2  
构造了一维非线性双曲型守恒律的一个新的高精度、高分辨率的守恒型TvD差分格式。其构造思想是:首先,将计算区间划分为若干个互不相交的小区间,再根据精度要求等分小区间,通过各细小区间上的单元平均状态变量,重构各细小区间交界面上的状态变量,并加以校正;其次,利用近似Riemann解计算细小区间交界面上的数值通量,并结合高阶Runge—Kutta TVD方法进行时间离散,得到了高精度的全离散方法。证明了该格式的TVD特性。该格式适合于使用分量形式计算而无须进行局部特征分解。通过计算几个典型的问题,验证了格式具有高精度、高分辨率且计算简单的优点。  相似文献   

8.
The coefficients for a nine-point high-order-accurate discretization scheme for an elliptic equation ∇2u− γ2u=r0 (∇2 is the two-dimensional Laplacian operator) are derived. Examples with Dirichlet and Neumann boundary condtions are considered. In order to demonstrate the high-order accuracy of the method, numerical results are compared with exact solutions.  相似文献   

9.
A finite volume hybrid scheme for the spatial discretization that combines a fixed stencil and a stencil determined by the classical essentially non‐oscillatory (ENO) scheme is presented. Evolution equations are obtained for the mean values of each cell by means of piecewise interpolation. Time discretization is accomplished by a classical fourth‐order Runge–Kutta. Interpolation polynomials are determined using information of adjacent cells. While smooth regions are interpolated by means of a fixed molecule, discontinuous or sharp regions are interpolated by the classical ENO algorithm. The algorithm estimates the interpolation error at each time step by means of two interpolants of order q and q+1. The main computational load of the resultant scheme is in the interpolation, which is performed by the divided differences table. This table involves O(qN) operations, where q is the interpolation order and N is the number of cells. Finally, linear test cases of continuous and discontinuous initial conditions are integrated to see the goodness of the hybrid scheme. It is well known that, for some particular initial conditions, the classical ENO scheme does not perform properly, not attaining the truncation error of the scheme. It is shown that, for the smooth initial condition, sin4(x), the classical ENO scheme does not preserve the character of stability of the initial value problem, giving rise to unstable eigenvalues. The proposed hybrid scheme solves this problem, choosing a fixed stencil over the whole computational domain. The resultant schemes are equivalent to the classical finite difference schemes, which preserve the character of stability. It is also known that the same degeneracy of the error can be encountered for discontinuous solutions. It is shown for the initial discontinuous solution, e−x, that the classical ENO algorithm does not perform properly due to the conflict between the selection of the stencil to smoother regions (downwind region) and the hyperbolic character of the problem, which obliges us to take information from downwind. The proposed hybrid scheme solves this problem by choosing a fixed stencil over the whole computational domain except at the discontinuity. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
A new compact third-order scheme for the solution of the unsteady Navier--Stokes equations on unstructured grids is proposed. The scheme is a cell-based algorithm, belonging to the class of Multidimensional Upwind schemes, which uses a finite-element reconstruction procedure over the cell to achieve third order (spatial) accuracy. Derivation of the scheme is given. The asymptotic accuracy, for steady/unsteady inviscid or viscous flow situations, is proved using numerical experiments. These results are compared with the performances of a second-order multidimensional upwind scheme. The new compact high-order discretization proves to have excellent parallel scalability, which makes it well suited for large-scale computations on parallel supercomputers. Our studies show clearly the advantages of the new compact third-order scheme compared with the classical second-order Multidimensional Upwind scheme. Received 29 October 2001 and accepted 21 March 2002  相似文献   

11.
A hybrid conservative finite difference/finite element scheme is proposed for the solution of the unsteady incompressible Navier–Stokes equations. Using velocity–pressure variables on a non-staggeredgrid system, the solution is obtained with a projection method basedon the resolution of a pressure Poisson equation. The new proposed scheme is derived from the finite element spatial discretization using the Galerkin method with piecewise bilinear polynomial basis functions defined on quadrilateral elements. It is applied to the pressure gradient term and to the non-linear convection term as in the so-called group finite element method. It ensures strong coupling between spatial directions, inhibiting the development of oscillations during long-term computations, as demonstrated by the validation studies. Two- and three-dimensional unsteady separated flows with open boundaries have been simulated with the proposed method using Cartesian uniform mesh grids. Several examples of calculations on the backward-facing step configuration are reported and the results obtained are compared with those given by other methods. © 1997 by John Wiley & Sons, Ltd. Int. j. numer. methods fluids 24: 833–861, 1997.  相似文献   

12.
This paper presents a Lagrangian cell-centered conservative gas dynamics scheme. The piecewise constant pressures of cells arising from the current time sub-cell densities and the current time isentropic speed of sound are introduced. Multipling the initial cell density by the initial sub-cell volumes obtains the sub-cell Lagrangian masses, and dividing the masses by the current time sub-cell volumes gets the current time sub-cell densities. By the current time piecewise constant pressures of cells, a scheme that conserves the momentum and total energy is constructed. The vertex velocities and the numerical fluxes through the cell interfaces are computed in a consistent manner due to an original solver located at the nodes. The numerical tests are presented, which are representative for compressible flows and demonstrate the robustness and accuracy of the Lagrangian cell-centered conservative scheme.  相似文献   

13.
非线性双曲型守恒律的高精度MmB差分格式   总被引:1,自引:0,他引:1  
构造了一维非线性双曲型守恒律方程的一个高精度、高分辨率的广义G odunov型差分格式。其构造思想是:首先将计算区间划分为若干个互不相交的小区间,再根据精度要求等分小区间,通过各细小区间上的单元平均状态变量,重构各等分小区间交界面上的状态变量,并加以校正;其次,利用近似R iem ann解算子求解细小区间交界面上的数值通量,并结合高阶R unge-K u tta TVD方法进行时间离散,得到了高精度的全离散方法。证明了该格式的Mm B特性。然后,将格式推广到一、二维双曲型守恒方程组情形。最后给出了一、二维Eu ler方程组的几个典型的数值算例,验证了格式的高效性。  相似文献   

14.
胡迎港  蒋艳群  黄晓倩 《力学学报》2022,54(11):3203-3214
Hamilton-Jacobi (HJ) 方程是一类重要的非线性偏微分方程, 在物理学、流体力学、图像处理、微分几何、金融数学、最优化控制理论等方面有着广泛的应用. 由于HJ方程的弱解存在但不唯一, 且解的导数可能出现间断, 导致其数值求解具有一定的难度. 本文提出了非稳态HJ方程的7阶精度加权紧致非线性格式 (WCNS). 该格式结合了Hamilton函数的Lax-Friedrichs型通量分裂方法和一阶空间导数左、右极限值的高阶精度混合节点和半节点型中心差分格式. 基于7点全局模板和4个4点子模板推导了半节点函数值的高阶线性逼近和4个低阶线性逼近, 以及全局模板和子模板的光滑度量指标. 为避免间断附近数值解产生非物理振荡以及提高格式稳定性, 采用WENO型非线性插值方法计算半节点函数值. 时间离散采用3阶TVD型Runge-Kutta方法. 通过理论分析验证了WCNS格式对于光滑解具有最佳的7阶精度. 为方便比较, 经典的7阶WENO格式也被推广用于求解HJ方程. 数值结果表明, 本文提出的WCNS格式能够很好地模拟HJ方程的精确解, 且在光滑区域能够达到7阶精度; 与经典的同阶WENO格式相比, WCNS格式在精度、收敛性和分辨率方面更优, 计算效率略高.   相似文献   

15.
16.
A new characteristic-based method for the solution of the 2D laminar incompressible Navier-Stokes equations is presented. For coupling the continuity and momentum equations, the artificial compressibility formulation is employed. The primitives variables (pressure and velocity components) are defined as functions of their values on the characteristics. The primitives variables on the characteristics are calculated by an upwind diffencing scheme based on the sign of the local eigenvalue of the Jacobian matrix of the convective fluxes. The upwind scheme uses interpolation formulae of third-order accuracy. The time discretization is obtained by the explicit Runge–Kutta method. Validation of the characteristic-based method is performed on two different cases: the flow in a simple cascade and the flow over a backwardfacing step.  相似文献   

17.
A space–time finite element method for the incompressible Navier–Stokes equations in a bounded domain in ?d (with d=2 or 3) is presented. The method is based on the time‐discontinuous Galerkin method with the use of simplex‐type meshes together with the requirement that the space–time finite element discretization for the velocity and the pressure satisfy the inf–sup stability condition of Brezzi and Babu?ka. The finite element discretization for the pressure consists of piecewise linear functions, while piecewise linear functions enriched with a bubble function are used for the velocity. The stability proof and numerical results for some two‐dimensional problems are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
We present a novel approach to hybrid Reynolds-averaged Navier-Stokes (RANS)/ large eddy simulation (LES) wall modeling based on function enrichment, which overcomes the common problem of the RANS-LES transition and enables coarse meshes near the boundary. While the concept of function enrichment as an efficient discretization technique for turbulent boundary layers has been proposed in an earlier article by Krank & Wall (A new approach to wall modeling in LES of incompressible flow via function enrichment. J Comput Phys. 2016;316:94-116), the contribution of this work is a rigorous derivation of a new multiscale turbulence modeling approach and a corresponding discontinuous Galerkin discretization scheme. In the near-wall area, the Navier-Stokes equations are explicitly solved for an LES and a RANS component in one single equation. This is done by providing the Galerkin method with an independent set of shape functions for each of these two methods; the standard high-order polynomial basis resolves turbulent eddies, where the mesh is sufficiently fine and the enrichment automatically computes the ensemble-averaged flow if the LES mesh is too coarse. As a result of the derivation, the RANS model is applied solely to the RANS degrees of freedom, which effectively prevents the typical issue of a log-layer mismatch in attached boundary layers. As the full Navier-Stokes equations are solved in the boundary layer, spatial refinement gradually yields wall-resolved LES with exact boundary conditions. Numerical tests show the outstanding characteristics of the wall model regarding grid independence, superiority compared to equilibrium wall models in separated flows, and achieve a speed-up by two orders of magnitude compared to wall-resolved LES.  相似文献   

19.
Several explicit Taylor-Galerkin-based time integration schemes are proposed for the solution of both linear and non-linear convection problems with divergence-free velocity. These schemes are based on second-order Taylor series of the time derivative. The spatial discretization is performed by a high-order Galerkin spectral element method. For convection-diffusion problems an operator-splitting technique is given that decouples the treatment of the convective and diffusive terms. Both problems are then solved using a suitable time scheme. The Taylor-Galerkin methods and the operator-splitting scheme are tested numerically for both convection and convection-diffusion problems.  相似文献   

20.
In this paper, we present a high-order discontinuous Galerkin Eulerian-Lagrangian method for the solution of advection-diffusion problems on staggered unstructured meshes in two and three space dimensions. The particle trajectories are tracked backward in time by means of a high-order representation of the velocity field and a linear mapping from the physical to a reference system, hence obtaining a very simple and efficient strategy that permits to follow the Lagrangian trajectories throughout the computational domain. The use of an Eulerian-Lagrangian discretization increases the overall computational efficiency of the scheme because it is the only explicit method for the discretization of convective terms that admits large time steps without imposing a Courant-Friedrichs-Lewy–type stability condition. This property is fully exploited in this work by relying on a semi-implicit discretization of the incompressible Navier-Stokes equations, in which the pressure is discretized implicitly; thus, the sound speed does not play any role in the restriction of the maximum admissible time step. The resulting mild Courant-Friedrichs-Lewy stability condition, which is based only on the fluid velocity, is here overcome by the adoption of the Eulerian-Lagrangian method for the advection terms and an implicit scheme for the diffusive part of the governing equations. As a consequence, the novel algorithm is able to run simulation with a time step that is defined by the user, depending on the desired efficiency and time scale of the physical phenomena under consideration. Finally, a complete Message Passing Interface parallelization of the code is presented, showing that our approach can reach up to 96% of scaling efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号