首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transient response of hydrophobically modified polyacrylamides (HMPAM) aqueous solutions with sodium dodecyl sulfate (SDS) during step shear rate experiments was evaluated. The experimental protocol involved employing first a low shear rate for a specific time, followed by an abrupt increase in shear rate (applied for the same time) and then finally reducing the shear rate to the initial value and recording the sample relaxation with time. While the second step was characterized by a general anti-thixotropic behavior, a large viscosity peak was observed at the third step at very short times followed by a thixotropic relaxation of the viscosity value. This peak was interpreted as a consequence of the formation of a transient network during the relaxation process. A kinetic model was used to better understand and to describe the thixotropy of HMPAM solutions in the presence of SDS. The kinetic constants obtained from the model decrease in value when the shear rate applied during the second step increases, reflecting the increase in recovery time needed for the system to relax back to a lower strain rate. As expected, as the degree of hydrophobic association increases or the degree of fluid structuring increases, the kinetic constant values strongly decrease.  相似文献   

2.
Polymer–droplet interactions have been studied in AOT/water/isooctane oil-continuous microemulsions mixed with an amphiphilic graft copolymer, or with the parent homopolymer (AOT = sodium bis(2-ethylhexyl) sulfosuccinate). The graft copolymer has an oil-soluble poly(dodecyl methacrylate) backbone and water-soluble poly(ethylene glycol) side chains. Pseudo-ternary polymer/droplet/isooctane phase diagrams have been established for both the parent homopolymer and the graft copolymer, and the two types of mixture display entirely different phase behavior. The homopolymer–droplet interaction is repulsive, and a segregative phase separation occurs at high droplet concentrations. By contrast, the graft copolymer–droplet interaction is attractive: the polymer is insoluble in the pure oil, but dissolves in the microemulsion. A comparatively high concentration of droplets is required to solubilize even small amounts of polymer. Static and dynamic light scattering has been performed in order to obtain information on structure and dynamics in the two types of mixture. For optically matched microemulsions, with a vanishing excess polarizability of the droplets, the polymer dominates the intensity of scattered light. The absolute intensity of scattered light increases as phase separation is approached owing to large-scale concentration fluctuations. Dynamic light scattering shows two populations of diffusion coefficients; one population originates from “free” microemulsion droplets and the other from the polymer (for homopolymer mixtures) or from polymer–droplet aggregates (for mixtures with the graft copolymer). The graft copolymer forms large polymer–droplet aggregates with a broad size distribution, which coexist with a significant fraction of free droplets.  相似文献   

3.
The conformational behavior of a globular protein, trypsin has been studied in presence of an anionic surfactant, sodium dodecyl sulfate (SDS) in aqueous medium by different techniques, such as, viscometry, circular dichroism, fluorimetry, Fourier transform infra-red, UV-vis absorption, dynamic light scattering and nuclear magnetic resonance. The results indicate that the viscosity of the mixture increases above the critical micelle concentration of SDS micelle supporting an expansion of a protein coil in the cluster. The spectroscopic techniques show the change of the conformation, i.e., the change of the values of alpha-helicity, beta-sheet, and random-coil of trypsin in the presence of SDS, and ultimately unfolding of trypsin occurs due to strong electrostatic repulsion of micellar clusters of the protein-surfactant complexes.  相似文献   

4.
The mixed micelles of sodium dodecyl sulphate (SDS) with Brij35 and Brij 97 were studied separately by fluorescence measurement using pyrene as fluorescent probe. In the range of 0–1.0 mole fraction (X) of added SDS to Brij solutions, the cmc value of the mixed micelles varies from 0.085 to 8 mmol with Brij 35 and 0.04 to 8 mmol with Brij 97. The aggregation number also changes. A measure of the stability of mixed micelles is also presented. The interaction parameter 12 and the chain–chain contribution parameter (B1) are extracted from the analysis of the results. This parameter B1 is related to the standard free energy change associated with the introduction of one ionic species into a nonionic micelle coupled with the release of one nonionic species from the micelle. The clouding behaviour of Brij 97 in the presence of SDS was investigated and the associated thermodynamic parameters of clouding were generated and discussed.  相似文献   

5.
Solution properties for random and diblock copolymers of polystyrene (PS) and poly(methyl methacrylate) (PMMA) have been measured by dynamic and total intensity light scattering in solvents of differing quality. The results are compared with the corresponding properties for PS and PMMA homopolymers of similar molecular weight, in order to determine if interactions between unlike monomers are significant. The hydrodynamic radius (Rh) and diffusion second virial coefficient (kd) for the random copolymer are found to be larger than the corresponding values for the homopolymers in a solvent which is near-theta for the two homopolymers, whereas no such effect is observed for the block copolymer. This suggests that most intrachain interactions occur a relatively short distance along the chain backbone. In a mutual good solvent Rh and kd of the random copolymer are comparable to the average of the values for the homopolymers, indicating that in a good solvent monomer/solvent interactions dominate over monomer/monomer interactions. For an isolated diblock copolymer in a mutual good solvent, there is no evidence that interactions between unlike monomers lead to additional expansion of the entire molecule, as measured by Rh, nor expansion of the individual blocks as probed by light scattering with one block optically masked. However, at low but finite concentration there is evidence (the coefficients of the binary interaction terms in the viscosity and the mutual diffusion coefficient, and the second and third virial coefficients) that a weak ordering effect may exist in block copolymer solutions, far from the conditions where microphase separation occurs. Finally, measurements of ternary polymer-polymer-solvent solutions show no dependence on monomer composition or monomer distribution for the tracer diffusion of probe PS-PMMA copolymers in a PMMA/toluene matrix. This indicate that the frictional interaction is largely unaffected by interactions between unlike monomers. However, there is evidence that the thermodynamic interaction is more unfavorable between a random copolymer and the homopolymer matrix than between a diblock and the matrix. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Rheological properties of isotropic solutions and gel structures of lysozyme–sodium dodecyl sulfate mixtures in water are investigated. Isotropic solutions behave as Newtonian fluids with very low viscosity values. For the lysozyme solutions the intrinsic viscosity and the Huggins coefficient were calculated on the basis of the Mooney equation. Above a certain yield stress value, the viscosity of the gel samples decreases continuously in the whole range of the shear rate. Dynamic rheological experiments show weak gel behavior where the storage modulus and the loss modulus are almost parallel and are frequency-dependent. A belated gel stage with very slow kinetics has been characterized. There is a substantial enhancement of the gel strength by ageing since the belated gel stage manifests a higher yield stress value and a higher storage modulus than the initial gel stage. The gels are stable in the temperature range between 10 and 32 °C.  相似文献   

7.
The precipitation boundary in aqueous mixtures of dodecylammonium chloride (DDACl) and sodium dodecyl sulfate (NaDS) was determined in the absence and in the presence of 1 mol dm–3 NaCl. The structure and the composition of the solid phase was characterized by x-ray and chemical analysis, respectively. Activities of Cl and Na+ ions in the aqueous phase were measured by ion-selective electrodes. As determined by calorimetry, precipitation is an exothermic process.The DDA·DS precipitate was formed in the equimolar region of the precipitation components. Its crystallographic structure is described. In an excess of sodium dodecyl sulfate, the precipitate incorporated substantial amounts of NaDS, as detected by analyses of both solid and liquid phases. X-ray analysis of the dry sample showed peaks of crystalline NaDS. According to the polarization microscopy of wet samples, one may conclude that liquid crystals, containing an excess of NaDS, are incorporated in the solid DDA·DS phase. The same was found in the case of an excess of DDACl; mixed liquid crystals with an excess of DDACl were incorporated in the solid DDA·DS.Interpretation of the solubility boundary points to the presence of DDA+·DS ion pairs. Formation of these species at low ionic strengths is characterized by the equilibrium constantK a 0 106. However, in the 1 mol dm–3 NaCl, the association of DDA+ and DS ions into pairs is inhibited (K a 0 0). This finding can be explained in terms of ionic clouds around the charged surfactant heads: if these heads are not in close contact, but separated due to structural effects of the chains, the dense distribution of counterions around them at high ionic strengths may compensate for electrostatic attraction and, thus, inhibit ion-pairing.  相似文献   

8.
The effect of aqueous binary mixtures of isomeric butanediols on the micellization of sodium dodecyl sulfate has been investigated. Conductivity and fluorescence techniques were employed to determine the critical micellar concentration, the degree of dissociation of the counterions and the aggregation numbers of the surfactants in these binary blends. Differential conductivity plots were employed to distinguish between the cooperative and the stepwise aggregation process of the surfactant in each solvent system. The mass-action model was employed to calculate the hydrophobic and the electrostatic contributions to the Gibbs energy of micellization as well as the monomer and the counterion concentrations in the postmicellar region. The thermodynamic parameters calculated for each system indicate that the micellization process occurs more readily in the presence of cosolvent owing to the formation of mixed micelles. Received: 5 July 2000 Accepted: 25 July 2000  相似文献   

9.
Mixtures of dioctadecyldimethylammonium chloride (DODAC) cationic vesicle dispersions with aqueous micelle solutions of the anionic sodium cholate (NaC) were investigated by differential scanning calorimetry, DSC, turbidity and light scattering. Within the concentration range investigated (constant 1.0 mM DODAC and varying NaC concentration up to 4 mM), vesicle → micelle → aggregate transitions were observed. The turbidity of DODAC/NaC/water depends on time and NaC/DODAB molar concentration ratio R. At equilibrium, turbidity initially decreases smoothly with R to a low value (owing to the vesicle–micelle transition) when R = 0.5–0.8 and then increases steeply to a high value (owing to the micelle–aggregate transition) when R = 0.9–1.0. DSC thermograms exhibit a single and sharp endothermic peak at Tm ≈ 49 °C, characteristic of the melting temperature of neat DODAC vesicles in water. Upon addition of NaC, Tm initially decreases to vanish around R = 0.5, and the main transition peak broadens as R increases. For R > 1.0 two new (endo- and exothermic) peaks appear at lower temperatures indicating the formation of large aggregates since the dispersion is turbid. All samples are non-birefringent. Dynamic light scattering (DLS) data indicate that both DODAC and DODAC/NaC dispersions are highly polydisperse, and that the mean size of the aggregates tends to decrease as R increases.  相似文献   

10.
We present an experimental investigation of the conformation and microstructure of Poly(N‐isopropylacrylamide) (PNIPA) in aqueous solution in the presence of salts. As a model, a strong salting–out salt (Na2SO4) and a strong salting–in salt (NaSCN) were chosen. Light scattering measurements show that Na2SO4 decreases the radius of gyration of PNIPA compared to its value in water, whereas NaSCN increases it. Moreover, the NaSCN solution was found to be a better solvent for PNIPA compared to water, whereas Na2SO4 solution is worse. Small‐angle neutron scattering measurements of semidilute PNIPA solutions, at temperatures well below the phase‐transition temperature, exhibit the behavior predicted by the model of dynamic concentration fluctuations characterized by a single correlation length. Excess scattering at low angles is observed in salt solutions at temperatures that are near, yet below, the phase‐transition temperature. This may indicate intrachain heterogeneities on the scale of 6–8 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3713–3720, 2004  相似文献   

11.
A thermo- and pH-responsive copolymer of N-isopropylacrylamide with maleic acid was studied using light scattering and turbidimetry methods. Aqueous solutions with pH values from 1.8 to 10.9 and in the concentration range from 0.001 to 0.015 g/cm3 were investigated. At all pH values and concentrations, phase separation was observed at temperatures T > 33°C. The temperatures of the start and the width of the phase separation interval increased with decrease of copolymer concentration and increase in pH. The redistribution of scattering entities, namely, macromolecular unimers, micelle-like structures, and loose aggregates, and growth of aggregate hydrodynamic radius took place during heating.  相似文献   

12.
Surfactant–polymer interactions in aqueous solutions have been studied using dynamic surface tension, polyelectrolyte titration, nephelometric turbidity, and dynamic light scattering. For the preparation of complexes, a technical cationic surfactant was used in combination with two poly(maleic acid-co-polymers) of similar structure but different hydrophobicity. The dynamic surface tensions of mixed solutions as functions of surfactant concentration at constant polyelectrolyte content, as well as changes in the surface activity due to the influence of polyanion at constant surfactant concentration are discussed in terms of a complex or aggregate formation in the bulk phase. The interaction of the surfactant with poly(maleic acid-alt-propene) (P-MS-P) and poly(maleic acid-alt--methylstyrene) (P-MS-MeSty), respectively, is strong in both cases and results in the formation of nanoparticles with properties depending on the composition of the corresponding mixture.  相似文献   

13.
Thermoresponsive graft copolymers with alkylene-aromatic polyester main chain and poly-2-ethyl-2-oxazoline side chains were synthesized. Two copolymer samples which differed in grafting density (0.5 and 0.7) were studied using dynamic and static light scattering and turbidimetry in aqueous solutions at concentration 0.0053?g?cm?3. Hydrodynamic radii of scattering objects and their contribution to light scattering were obtained as a function of temperature in a wide temperature interval. Temperatures of phase separation were found out. Effect of grafting density on the copolymer behavior in aqueous solutions upon heating was determined. In particular, the phase separation temperature reduces with the decreasing grafting density.  相似文献   

14.
Solubilization of cholesterol, differential scanning calorimetric (DSC), nuclear magnetic resonance (NMR) and dynamic light scattering (DLS) measurements were performed in order to reveal the dispersion mechanisms of stratum corneum (SC) into each intact corneocytes in the following systems: (1) in the aqueous mixed solutions of sodium dodecyl sulfate (SDS) and N,N-dimethyldodecylamine oxide (C12DMAO); (2) in the aqueous micellar solutions of C12DMAO containing solubilized α-terpineol (α-T); and (3) in the aqueous micellar solutions of C12DMAO containing solubilized limonene. The intercellular lamellar structure of SC was revealed to be disrupted and/or removed in all these solutions. However, considering the micellar sizes and the interaction among molecules in micelle, the dispersion mechanisms in these three systems were different each other. The three dispersion mechanisms of SC were estimated and discussed on the basis of the results of solubilization, DSC, NMR and DLS, respectively.  相似文献   

15.
1H NMR self-diffusion coefficient, spin-lattice relaxation time, spin-spin relaxation time, and two-dimensional nuclear Overhauser enhancement (2D NOESY) measurements have been used to study the association behavior of a novel hydrophobically associating copolymer composed of acrylamide (AM) and a small amount of 2-phenoxyethyl acrylate (POEA), and its interaction with the anionic surfactant sodium dodecyl sulfate (SDS). Three sets of copolymers with approximately the same composition but with different hydrophobic POEA contents were investigated. The POEA contents for these copolymers were about 1.41, 1.03, and 0.56 mol% respectively, as validated by 1H NMR spectra. Self-diffusion coefficient measurements show that the aggregation process occurs in a relative narrow concentration range and the critical association concentrations (cacs), of these copolymers are within this narrow concentration range, which are in agreement with those measured by viscosity measurements (6 g L–1). Above this concentration, the hydrophobic POEA moieties are found to associate and possibly build a transitory three-dimensional network along the polyacrylamide (PAM) backbones, which induces a strong decrease in NMR parameters including self-diffusion coefficients and relaxation times. The surfactant SDS showed a significant interaction with the copolymer in the dilute solution. Addition of SDS resulted in the binding of SDS on copolymer POEA-PAM segments and reinforced the interchain transient network formation of copolymer at a concentration below its cac. In the SDS/POEA-PAM mixed systems, the hydrophobic methylene groups of the SDS molecules were preferentially located in the vicinity of the phenoxy groups of the POEA hydrophobes.  相似文献   

16.
The aggregation of Erwinia (E) gum in a 0.2 M NaCl aqueous solution was investigated by multi‐angle laser light scattering and gel permeation chromatography (GPC) combined with light scattering. The GPC chromatograms of five fractions contained two peaks; the fractions had the same elution volume but different peak areas, suggesting that aggregates and single chains coexisted in the solution at 25 °C. The apparent weight‐average molecular weights (Mw) of the aggregates and single chains for each fraction were all about 2.1 × 106 and 7.8 × 104, respectively. This indicates that the aggregates were composed of about 27 molecules of E gum in the concentration range used (1.0 × 10−6 to 5.0 × 10−4 g/mL). The weight fraction of the aggregates (wag) increased with increasing concentration, but the aggregates still existed even in an extremely dilute solution. The fractionation process and polymer concentration hardly affected the apparent aggregation number but significantly changed wag. The E‐gum Mw decreased sharply with an increase in temperature. When the E‐gum solution was kept at 100 °C, wag decreased sharply for 20 h and leveled off after 100 h. Once the aggregates were decomposed at a higher temperature, no aggregation was observed in the solution at 25 °C, indicating that the aggregation was irreversible. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1352–1358, 2000  相似文献   

17.
Molecular interactions between sodium dodecyl sulfate (SDS) and N,N-dimethyldodecylamine oxide (C12DMAO), whose mixtures were effective for dispersion of stratum corneum (SC) into intact corneocytes, were studied and found to be strongest at an SDS/C12DMAO molar ratio of 1/3, when dispersion of SC was most effective and the sizes of the mixed micelles were largest.

This dispersion effect was confirmed as being caused by the stronger solubilizing power of molecular complexes formed between SDS and C12DMAO in the binary mixed solutions by using 1H NMR. The mechanisms for removing intercellular lipids such as ceramides, cholesterol and their derivatives, which play an important role as adhesives among the corneocytes, and for dispersing SC into intact cells were proposed on the basis of supporting data obtained from 1H-NMR and light scattering measurements.  相似文献   


18.
Aggregation behavior including dilute solution property and surface‐activity of the amphiphilic random copolymer composed of 2‐(acrylamido)‐2‐methylpropanesulfonic acid and tris(trimethylsiloxy)silylpropylmethacrylate (AMPS/TRIS copolymer) in aqueous solution were studied by static light scattering (SLS), dynamic light scattering (DLS), surface tension measurement, and transmission electron microscopy (TEM). The surface tension measurement made it clear that AMPS/TRIS copolymer exhibited weaker surface‐activity than a typical low‐molecular weight surfactant sodium dodecyl sulfate in water, that is, there were no plateau of surface tension γ versus concentration and no critical micelle concentration (CMC) in the whole concentration studied. SLS and DLS analyses, and TEM revealed that AMPS/TRIS copolymer self‐associated into imperfect core‐shell micelles having hydrophobic TRIS core surrounded by hydrophilic AMPS shell in water. AMPS shell was considered as a hard shell due to the stiffness of AMPS chain in water. TRIS chain could not densely aggregate in water due to the large steric hindrance between bulky trimethylsiloxy groups despite its hydrophobic nature, thereby providing TRIS core with less‐dense structure. The balance between the spreading force of stiff AMPS chain and the cohesion force of bulky TRIS chain provides the driving force for forming the unique micelle having less‐dense TRIS core and hard AMPS shell. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

19.
We discuss the synthesis and characterization of polyacrylamide (PAM) homopolymers with carefully controlled molecular weights (MWs). PAM was synthesized via free‐radical solution polymerization under conditions that yield highly linear polymer with minimal levels of hydrolysis. The MW of the PAM homopolymers was controlled by the addition of sodium formate (NaOOCH) to the polymerization medium as a conventional chain‐transfer agent. MWs and polydispersity indices (PDIs) were determined via size exclusion chromatography/multi‐angle laser light scattering analysis; for polymerizations carried out to high conversion, PAM MWs ranged from 0.23 to 6.19 × 106 g/mol, with most samples having PDI ≈2.0. Zero‐shear intrinsic viscosities of the polymers were determined via low‐shear viscometry in 0.514 M NaCl at 25 °C. Data derived from the polymer characterization were used to determine the chain‐transfer constant to NaOOCH under the given polymerization conditions and to calculate Mark–Houwink–Sakurada K and a values for PAM in 0.514 M NaCl at 25 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 560–568, 2003  相似文献   

20.
The self‐assembly process in aqueous solutions of the methoxyl‐poly(ethylene glycol)‐block‐poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic sodium)‐block‐poly(N‐isopropyl acrylamide) (PNIPAAM) triblock copolymer, synthesized via two different atomic transfer radical polymerization methods, namely “one‐pot” (P3‐sample) and “two‐pot” (P2‐sample), was studied by various experimental techniques. The “one‐pot” procedure leads to a copolymer (P3) where the PNIPAAM block is contaminated with a minor quantity of 2‐acrylamido‐2‐methyl‐1‐propane sulfonate (AMPS) residuals and this sample does not form micelles over the considered temperature region, but unimers and temperature‐induced aggregates coexist in the presence of a small amount of salt. The P2 polymer forms micelles and intermicellar structures, but the former moieties disappear at high temperatures, whereas the latter species contract with increasing temperature. Small‐angle neutron scattering results revealed correlation peaks, both for P3 and P2, and no micelle formation for P3, but a pronounced upturn of the scattered intensity at low wavevector values at elevated temperatures for the P2 copolymer. The findings from this study clearly show that the spurious AMPS residuals have a drastic influence on the self‐assembly and micelle formation of the triblock copolymer. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 524–534  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号