首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The oxidation and nitridation processes of niobium films in a rapid thermal processing (RTP) – system were investigated. 200 and 500 nm niobium films were deposited via sputtering on sapphire-(1-102)-substrate. At first niobium films were oxidized in molecular oxygen at temperatures ranging from 350 to 500 °C and for times of 1, 2 and 5 min and then nitridated in ammonia at 1000 °C for 1 min using an RTP system. For characterisation of the niobium films complementary analytical methods were used: X-ray diffraction (XRD) for phase analysis, secondary ion mass spectrometry (SIMS) for determining the elemental depth profiles of the films, scanning electron microscopy (SEM) and atomic force microscopy (AFM) for characterisation of the surface morphology of the films. The influence of the substrate, single crystalline sapphire, on the reactivity of the niobium films was studied in dependence of temperature, time of reaction and film thickness. The possibility of existence of niobium oxynitride phase was investigated. According to XRD and SIMS data, there is evidence that an oxynitride phase is formed after oxidation and subsequent nitridation in the bulk of some Nb films. In some of the experiments crack formation in the films or even delamination of the Nb films from the substrates was observed.  相似文献   

2.
The possibility of forming niobium oxynitride through the nitridation of niobium oxide films in molecular nitrogen by rapid thermal processing (RTP) was investigated. Niobium films 200 and 500 nm thick were deposited via sputtering onto Si(100) wafers covered with a thermally grown SiO2 layer 100 nm thick. These as-deposited films exhibited distinct texture effects. They were processed in two steps using an RTP system. The as-deposited niobium films were first oxidized under an oxygen atmosphere at 450 °C for various periods of time and subsequently nitridated under a nitrogen atmosphere at temperatures ranging from 600 to 1000 °C for 1 min. Investigations of the oxidized films showed that samples where the start of niobium pentoxide formation was detected at the surface and the film bulk still consisted of a substoichiometric NbOx phase exhibited distinctly lower surface roughness and microcrack densities than samples where complete oxidation of the film to Nb2O5 had occurred. The niobium oxide phases formed at the Nb/substrate interface also showed distinct texture. Zones of niobium oxide phases like NbO and NbO2, which did not exist in the initial oxidized films, were formed during the nitridation. This is attributed to a “snow-plough effect” produced by the diffusion of nitrogen into the film, which pushes the oxygen deeper into the film bulk. These oxide phases, in particular the NbO2 zone, act as barriers to the in-diffusion of nitrogen and also inhibit the outdiffusion of oxygen from the SiO2 substrate layer. Nitridation of the partially oxidized niobium films in molecular nitrogen leads to the formation of various niobium oxide and nitride phases, but no indication of niobium oxynitride formation was found. Figure Schematic representation of the phase distribution in 200 nm Nb film on SiO2/Si substrate after two steps annealing using an RTP system. The plot below represents the SIMS depth profiles of the nitridated sample with the phase assignment  相似文献   

3.
The feasibility of niobium oxynitride formation through nitridation of niobium pentoxide films in ammonia by rapid thermal processing (RTP) was investigated. Niobium films 200 and 500 nm thick were deposited by sputtering on Si(100) wafers covered by a 100 nm thick thermally grown SiO2 layer. These as‐deposited films exhibited distinct texture effects. They were processed in three steps using an RTP system. The as‐deposited niobium films were first nitridated in an ammonia atmosphere at 1000 °C for 1 min and then oxidised in molecular oxygen at temperatures ranging from 400 to 600 °C. Those samples in which a single Nb2O5 phase was determined after oxidation were additionally nitridated in ammonia at 1000 °C for 1 min. Investigations show that surface roughness of the samples after oxidation of niobium films first nitridated in ammonia is lower than after direct oxidation of as‐deposited films in oxygen, although the niobium pentoxide phase formed after annealing was the same in both cases. We explain this result as being due to the large expansion of the niobium lattice during the direct oxidation of the niobium film in molecular oxygen and also to the high oxidation rate of the as‐deposited niobium film in oxygen. By incorporation of oxygen in the crystal lattice of niobium and rapid formation of niobium pentoxide, substantial intrinsic stress was built up in the film, frequently resulting in delamination of the film from the substrate. Nitrogen hinders the diffusion of oxygen in nitridated films, which leads to a decrease of the oxidation rate and thus slower formation of Nb2O5. Nitridation of the completely oxidised niobium films in ammonia leads to the formation of niobium oxynitride and niobium nitride phases.  相似文献   

4.
Amorphous indium-tin-oxide (ITO) transparent conducting film (15 at% Sn; thickness, 150–190 nm) was deposited on silicon wafer at room temperature by RF magnetron sputtering for temperature programmed desorption (TPD) in vacuum. The thermal crystallization was accompanied by evolution of water vapor (the main gas), argon and carbon dioxide. The total amount of evolved water vapor (H2O [mol]/(In [mol]+Sn [mol])>0.2) was one or two orders of magnitude more than that from the nanocrystalline ITO films reported in our previous papers. The thermal change of amorphous ITO film was remarkably affected by the position of the substrate. An abrupt gas evolution was characteristic of the amorphous ITO films deposited on the position near the target center. The evolution temperature (548–563 K) was higher than the gas evolution temperature from the crystalline films. The far from center positioned films crystallized at higher temperature with relatively slower evolution of the gases.  相似文献   

5.
The nitridation of niobium films approximately 250 and 650 nm thick by rapid thermal processing (RTP) at 800 °C in molecular nitrogen or ammonia was investigated. The niobium films were deposited by electron beam evaporation on silicon substrates covered by a 100 or 300 nm thick thermally grown SiO2 layer. In these investigations the reactivity of ammonia and molecular nitrogen was compared with regard to nitride formation and reaction with the SiO2 substrate layer. The phases formed were characterized by X-ray diffraction (XRD). Depth profiles of the elements in the films were recorded by use of secondary neutral mass spectrometry (SNMS). Microstructure and spatial distribution of the elements were imaged by transmission electron microscopy (TEM) and energy-filtered TEM (EFTEM). Electron energy loss spectra (EELS) were taken at selected positions to discriminate between different nitride, oxynitride, and oxide phases. The results provide clear evidence of the expected higher reactivity of ammonia in nitride formation and reaction with the SiO2 substrate layer. Outdiffusion of oxygen into the niobium film and indiffusion of nitrogen from the surface of the film result in the formation of oxynitride in a zone adjacent to the Nb/SiO2 interface. SNMS profiles of nitrogen reveal a distinct tail which is attributed to enhanced diffusion of nitrogen along grain boundaries.  相似文献   

6.
Direct current magnetron sputtering of a metallic W + Au target or high-frequency magnetron sputtering of WO3 + Au oxide targets was used to prepare thin (about 100 nm) nanocrystalline WO3 films with the addition of gold (disperse layers of catalytic gold were additionally deposited on the surface of films). The composition and micromorphology of the surface of films and the electrical and gas sensitive characteristics of nitrogen dioxide sensors were studied to determine the mechanism of the influence of gold on the properties of WO3 films. The films were shown to contain the β-WO3 orthorhombic and γ-WO2.72 monoclinic phases and gold particles. The presence of the nonstoichiometric γ-WO2.72 phase was shown to increase the concentration of oxygen vacancies in films and decrease the resistance of sensors to 1–2 MΩ. Gold nanoparticles 9–15 nm in size segregated on the surface of semiconductor crystallites and increased the response of sensors to NO2. The conclusion was drawn that deposited catalytic gold layers increased the response to traces of nitrogen dioxide.  相似文献   

7.
Journal of Solid State Electrochemistry - Transparent thin films of pure ZnO, Ca-doped ZnO (CZO), and Ga-doped ZnO (GZO) were deposited on glass by RF magnetron sputtering. The influence of calcium...  相似文献   

8.
Indium tin oxide (ITO) thin films were deposited by mid frequency pulsed dual magnetron sputtering using a metallic alloy target with 10 wt.% tin in an atmosphere of argon and oxygen. The aim of the work was to study the interdependence of structural, electrical and optical properties of ITO films deposited in the reactive and transition target mode, respectively. The deposition rate in the transition mode exceeds the deposition rate in the reactive mode by a factor of six, a maximum value of 100 nm·m min−1 could be achieved. This corresponds to a static deposition rate of 200 nm min−1. The lowest electrical resistivity of 1.1·10−3 Ω cm was measured at samples deposited in the high oxygen flow range in the transition mode. The samples show a good transparency in the visible range corresponding to extinction coefficients being below 10−2. X-ray diffraction was used to characterise crystalline structure as well as film stress. ITO films prepared in the transition mode show a slightly preferred orientation in (211) direction, whereas films deposited in the reactive mode are strongly (222) oriented. Compared to undoped In2O3 all samples have an enlarged lattice. The lattice strain perpendicular to the surface is about 0.8% and 2.0% for films grown in the transition and the reactive mode, respectively. Deposition in the transition mode introduces a biaxial film stress in the range of −300 MPa, while stress in reactive mode samples is −1500 MPa.  相似文献   

9.
Carbon–metal composite thin films were synthesized by a hybrid process combining magnetron sputtering and PECVD in an argon–methane plasma. Titanium was chosen as the target metal. The paper is focused on the impact of three types of deposition process (DC magnetron, RF magnetron or Ionized Physical Vapour Deposition – IPVD) on thin films' deposition and microstructure. The effect of the methane fraction in gas discharge was also studied. Films were analysed by EDX, XPS and XRD. Results indicate steady deposition conditions for RF or IPVD operation whatever the methane fraction in the discharge without any problem of discharge instability commonly observed in DC operation. The presence of TiC crystallites in a-C:H matrix was detected at intermediary methane fraction in discharge whatever the operating mode. Nevertheless, at constant methane fraction in discharge, strong difference between film microstructure and composition was observed according to the operating mode.  相似文献   

10.
Single‐bi‐layer of Ni–Ti thin film was deposited using DC and RF magnetron sputtering technique by layer‐wise deposition of Ni and Ti on Si(100) substrate in the order of Ni as the bottom layer and Ti as the top layer. The deposition of these amorphous as‐deposited thin films was followed by annealing at 300 °C, 400 °C, 500 °C, and 600 °C temperature with 1‐h annealing time for each to achieve crystalline thin films. This paper describes the fabrication processes and the novel characterization techniques of the as‐deposited as well as the annealed thin films. Microstructures were analysed using FESEM and HRTEM. Nano‐indentation and AFM were carried out to characterize the mechanical properties and surface profiles of the films. It was found that, for the annealing temperatures of 300 °C to 600 °C, the increase in annealing temperature resulted in gradual increase in atomic‐cluster coarsening with improved ad‐atom mobility. Phase analyses, performed by GIXRD, showed the development of silicide phases and intermetallic compounds. Cross‐sectional micrographs exhibited the inter‐diffusion between the two‐layer constituents, especially at higher temperatures, which resulted either in amorphization or in crystallization after annealing at temperatures above 400 °C. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Thin films of fluorocarbon were deposited on polyethersulfone membranes via argon plasma sputtering of a poly(tetrafluoroethylene) (PTFE) target in an RF magnetron plasma reactor. The obtained deposited ultrathin coatings had nanoscale roughnesses and high degrees of fluorination. The intensity of fluorine atom in plasma environment during fluorocarbon deposition was investigated. Depending on the deposition conditions comprising working gas pressure, applied RF power, and distance between the target and the substrate, polymeric films with different chemical compositions and/or morphologies were obtained. The morphologies of the films were analyzed by means of SEM, XPS, and AFM. The results suggested that the sputtered film deposited at a higher pressure and longer target–substrate distance and moderate RF power had a surface composition and chemical structure closer to those of the PTFE film. The treated hydrophobic PES membranes with water contact angles as high as 115° were applied for the first time in an air gap membrane distillation setup for removal of benzene as a volatile organic compound from water. The results showed that the plasma-treated membranes have a comparable or superior performance to that of commercial PTFE used in membrane distillation with similar permeate flux and separation factor after 20 h long term performance.  相似文献   

12.
Al‐doped zinc oxide (AZO) thin films were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates by radio frequency (RF) magnetron sputtering method at room temperature. The effects of film thickness on the surface structure and the photoluminescence properties of the films were investigated by atomic force microscopy (AFM), secondary ion mass spectroscopy (SIMS) and room temperature photoluminescence (PL). AFM analysis showed that the surface of all films was extremely flat and uniform at nanoscale. Root mean square (RMS) value of the surface roughness which scanned the surface area of 3 µm by 3 µm and grain size increased with increasing the film thickness. Thus, the surface morphology of the films became rough because of the coarse grains. The depth profile of AZO layers was analyzed by SIMS. It was found that the thickness of the AZO layer is almost same with the desired film thickness. The PL intensity of the dominant peak decreased and shifted slightly towards the shorter wavelengths with increasing the film thickness. According to the relationships between luminescence intensity and crystalline characteristics, it was observed that the intensity of the peak decreased by the increased surface area of the grains. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The low temperature RF plasma treatment was used to control the surface chemistry and optical property of TiO2 thin films deposited by RF magnetron sputtering with a very good uniformity at 300 °C substrate heating temperature. The XRD pattern indicates the crystalline structure of the film could be associated to amorphous structure of TiO2 in thin film. The plasma treatment of TiO2 film can increase the proportion of Ti3+ in Ti2p and decrease in carbon atoms as alcohol/ether group in C1s at the surface. The optical transmittance of the film was enhanced by 50% after the plasma treatment. The surface structure and morphology remain the same for untreated and low-pressure plasma-treated films. Therefore, increase in the optical transmission could be due to change in surface chemistry and surface cleaning by plasma treatment.  相似文献   

14.
CuSn thin films were deposited by the radio‐frequency (RF) magnetron co‐sputtering method on Si(100) with Cu and Sn metal targets with various RF powers. The thickness of the films was fixed at 200 ± 10 nm. The synthesized CuSn thin films mainly consisted of Cu20Sn6 and Cu39Sn11 phases, which was revealed by an X‐ray diffraction (XRD) study. The high‐resolution Cu 2p XPS and Cu LMM Auger electron spectra indicate that metallic Cu oxidized to Cu+ and Cu2+ as the RF power on Cu target increased. The atomic ratios of Sn0 and Sn4+ decreased, while that of Sn2+ increased with increasing RF power on the Cu target. The polar surface free energy (SFE) component has a different tendency in comparison with the total SFE and the dispersive SFE component. The dispersive SFE component was the dominating contributing factor to the total SFE compared with the polar SFE. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
磁控溅射制备的铜钒氧化物薄膜及其电化学性能   总被引:1,自引:1,他引:0  
采用射频磁控溅射技术在硅基底上分别制备了无掺杂和掺杂Cu的氧化钒薄膜. X射线衍射(XRD)分析和扫描电子显微镜(SEM)观察表明, 无掺杂的薄膜为多晶V2O5, 掺杂Cu的薄膜为非晶态. X射线光电子能谱(XPS)分析结果表明, 掺杂Cu的薄膜为铜钒氧化物膜, 其中Cu离子表现为+2价, V离子为+4与+5价的混合价态. 随着Cu掺杂量的增大, +4价V的含量增加. 电化学测试结果表明, V2O5薄膜在掺杂Cu以后其放电容量有显著的提高, 其中Cu2.1VO4.4薄膜在100次循环后容量还保持为83.4 μA·h·cm-2·μm-1, 表现出较高的放电容量和较好的循环性能.  相似文献   

16.
B/Nb and B/Nb2N bilayers and Nb/B/Nb trilayers of about 550 nm total thickness have been deposited on Si(100) wafers with 100 nm thermally grown oxide. Nb and B layers were deposited by magnetron sputtering. Nb2N layers were prepared by nitridation of Nb films via rapid thermal processing (RTP). The samples were annealed subsequently at temperatures between 600 and 1,200 °C in an RTP system under Ar or NH3 gas flow to study interdiffusion and reactivity of niobium, boron and nitrogen. Formation of phases was investigated by X-ray diffraction (XRD); surface morphology and roughness were studied via scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Elemental depth profiles of selected samples were recorded by secondary ion mass spectrometry (SIMS). Annealing of the B/Nb bilayers and Nb/B/Nb trilayers under Ar leads to the formation of Nb3B2 at 1,200 °C at the B/Nb interface. At lower temperatures the high oxygen content in the boron layer is supposed to hinder the formation of borides due to formation of glass-like boron oxides. In NH3 several niobium nitrides are formed but no boride phases. Here again the reactivity of boron with niobium is suppressed by the high oxygen content and boron oxide formation. During annealing of the B/Nb2N bilayers no borides were formed indicating that well-formed Nb2N is an effective diffusion barrier for B.  相似文献   

17.
应用射频磁控溅射技术在硅基底上制备氧化锡薄膜,着重研究溅射功率对薄膜结构和电化学性能的影响.XRD,SEM分析及恒电流充放电测试表明,随着溅射功率的增大,薄膜的结晶程度提高;生长速率和晶粒尺寸增大;电池的贮锂容量减少,且首圈不可逆容量损失增大.溅射功率对薄膜的电化学性能有较大的影响.  相似文献   

18.
We have fabricated ITO-ZnO composition spread films to investigate the effects of substrate temperature on their electrical and optical properties by using combinatorial RF magnetron sputtering. It turned out by X-ray measurement that the film with zinc contents above 16.0 at% [Zn/(In+Zn+Sn)] showed amorphous phase regardless of substrate temperature. The amorphous ITO-ZnO film had lower resistivity than polycrystalline films. When the films were deposited at 250 °C, the minimum resistivity of 3.0×10−4 Ω cm was obtained with the zinc contents of 16.0 at%. The indium content could be reduced as high as ~30 at% compared to that of ITO for the films having similar resistivity (~10−4 Ω cm). However, a drastic increase of resistivity was observed for the ITO-ZnO films deposited at 350 °C, having zinc contents below 15.2 at%.  相似文献   

19.
Formation of niobium nitride by rapid thermal processing   总被引:1,自引:0,他引:1  
The formation of group V transition metal nitride films by means of rapid thermal processing (RTP) has been investigated. Here we focus on the nitridation of niobium films of 200-500 nm thickness in the temperature range from 500 to 1,100 degrees C under laminar flow of molecular nitrogen or ammonia. The nitride phases formed were characterized by X-ray diffraction (XRD). Secondary neutral mass spectrometry (SNMS) and transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS) were carried out on samples of selected experiments to provide more detailed information about the initial stages of nitride formation and the microstructure of the films. A classical formation sequence of nitride phases was observed with increasing nitrogen content in the order: alpha-Nb(N) --> beta-Nb2N --> gamma-Nb4N3 --> delta'-NbN --> Nb5N6. Furthermore, oxide enriched regions were discovered inside the metal films. These turned out to be formed mainly in the nitride sequence between the a-alphaNb(N) and beta-Nb2N-phases at the Nb/SiO2 interface due to a reaction of the Nb with the SiO2 layer of the silicon substrates on which the films had been deposited. The SiO2 layer acts as diffusion barrier for nitrogen but also as source for oxygen, according to SNMS and TEM/EELS studies, resulting in the formation of Nb-oxides and/or oxynitrides at the Nb/SiO2 interface.  相似文献   

20.
TiO2 thin films were deposited on ITO/Glass substrates by the rf magnetron sputtering in this study. The electrochromic properties of TiO2 films were investigated using cyclic voltammograms (CV), which were carried out on TiO2 films immersed in an electrolyte of 1 M LiClO4 in propylene carbonate (PC). As- deposited TiO2 thin film was amorphous, while the films post-annealed at 300~600°C contained crystallized anatase and rutile. With the increase of the annealing temperature, the surface roughness of film increased from 1.232 nm to 1.950 nm. Experimental results reveal that the processing parameters of TiO2 thin films will influence the electrochromic properties such as transmittance, ion-storage capacity, inserted charge, optical density change, coloration efficiency and insertion coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号