首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of silyl diazomethane (1a-d) to fullerene C60 at room temperature provided the mono-adducts, the bis- and tris-adducts of silyl fulleroid (3a-d) in moderate yields. The structures of the silyl fulleroids were characterized by mass spectroscopy, as well as 1H and 13C NMR. The gated 1H NMR and 13C-1H COLOC analyses of 3a-d showed a correlation between the methine proton resonances and three fullerene carbons. These observations, as well as the 1H NMR chemical shifts of the methine protons, suggest a remarkable diastereoselectivity, with the silyl groups located above a five-membered ring. Two transition states of the thermal nitrogen-extrusion of pyrazoline intermediate (2a) were theoretically obtained, the structures of which disclosed that the diastereoselectivity is a consequence of minimization of the repulsive interaction between the silyl groups and the N2 moiety. The bridgehead CC double bond of the silyl fulleroid is thought to be reactive by POAV analyses. The silyl fulleroids (3a,b) were found to react with singlet oxygen to afford the silyl enol ether (9a,b) via 1,3-silyl migration of a diketone (8a,b). This is the first example of 1O2 oxygenation of fulleroids.  相似文献   

2.
Reactions of readily available and stable 1-(α-alkoxyalkyl)benzotriazoles type 9a,b and 10a-d with a variety of silyl enol ethers 11 or 1,3-dicarbonyl compounds 13 give the expected ketones 12a-l (60-92%), β-keto esters 14a,b (62-67%), and malonates 14c,d (79-88%) in which a tetrahydrofuran or tetrahydropyran moiety has been introduced at the α position. 1-(Benzotriazol-1-yl)alkyl esters 7 are converted by cyanide anion into cyanohydrin esters 15a-i (55-98%).  相似文献   

3.
The reaction of [60]fullerene with organolithium and Grignard reagents carrying orthoester, acetal or other end groups yielded adducts 3-5 at the 6-6 bond of C60 after quenching with trifluoroacetic acid. The adducts could be easily methylated or benzylated with methyl iodide or benzyl bromide in the presence of potassium tert-butoxide to yield exclusively the 1,4-disubstituted C60 6 and 7a,b. Cleavage of the orthoester, acetal and silylether groups gave the corresponding carboxylic acid 9, aldehydes 10a,b and 11 and alcohols 12 and 13a,b. The carboxylic acid 9 readily reacted with alanine ethyl ester under standard peptide coupling conditions to give 14 in 55% yield. Attempts to generate a silyl enol ether from the reaction of aldehyde 10b with TIPSOTf and triethylamine failed. Instead the reaction led to a cyclized ether 16a (or alcohol 16b in the absence of silylating agent) resulting from the addition of an initially formed fulleride anion to the aldehyde group. The corresponding acetal 4b reacted similarly. The reaction of aldehyde 10b with aniline also gave a cyclized product 19. Surprisingly, aldehyde 11, which no longer carried an acidic fullerene proton reacted with aniline to give a product 20 resulting from an intramolecular Diels-Alder reaction followed by aromatization of a primarily formed N-phenylimine. Alcohol 13b could be readily converted to the corresponding bromide using tetramethyl-α-bromoenamine. The bromide was reacted with the carbanion derived from the protected glycine derivative to yield the diastereomeric fullerene amino acid derivatives 1-benzyl-4-[α-propyl-tert-butylglycinate benzophenone imine] 1,4-dihydro[60]fullerenes 24a and 24b.  相似文献   

4.
Concise syntheses of the substituted enynediones 28a, 33b and 36 starting from the cyclohexenealdehyde 18, corresponding to ring A in the taxanes, and the vinylstannane 24, are described. Treatment of 36 with Bu3SnH-AIBN did not lead to the oxy-substituted taxadiene 37 expected from a tandem radical macrocyclisation-radical transannulation sequence; instead, a mixture of unidentified products resulted. When the PMB ether 33b corresponding to the alcohol 36 was treated with Bu3SnH-AIBN under similar conditions, p-anisaldehyde was isolated, as a major by-product, but no evidence for the formation of a taxadiene could be observed. In contrast, the iododienynedione 41, i.e., deoxy 36, underwent a tandem radical macrocyclisation-transannulation sequence, when treated with Bu3SnH-AIBN, leading to the tetraoxy-bis-nortaxadiene 42 in 44% yield. Attempts to synthesise the alcohol 28b from the silyl ether 28a en route to the iodide 28c instead gave the substituted tetrahydrofuran 29 via an intramolecular oxy-Michael reaction.  相似文献   

5.
The first Mukaiyama aldol reaction on mucohalic acid (1a/b) has been achieved. Reaction of 1 with various ketene silyl acetals or silyl enol ethers in the presence of a Lewis acid provides the γ-substituted γ-butenolides in good to excellent yield.  相似文献   

6.
Treatment of either RuHCl(CO)(PPh3)3 or MPhCl(CO)(PPh3)2 with HSiMeCl2 produces the five-coordinate dichloro(methyl)silyl complexes, M(SiMeCl2)Cl(CO)(PPh3)2 (1a, M = Ru; 1b, M = Os). 1a and 1b react readily with hydroxide ions and with ethanol to give M(SiMe[OH]2)Cl(CO)(PPh3)2 (2a, M = Ru; 2b, M = Os) and M(SiMe[OEt]2)Cl(CO)(PPh3)2 (3a, M = Ru; 3b, M = Os), respectively. 3b adds CO to form the six-coordinate complex, Os(SiMe[OEt]2)Cl(CO)2(PPh3)2 (4b) and crystal structure determinations of 3b and 4b reveal very different Os-Si distances in the five-coordinate complex (2.3196(11) Å) and in the six-coordinate complex (2.4901(8) Å). Reaction between 1a and 1b and 8-aminoquinoline results in displacement of a triphenylphosphine ligand and formation of the six-coordinate chelate complexes M(SiMeCl2)Cl(CO)(PPh3)(κ2(N,N)-NC9H6NH2-8) (5a, M = Ru; 5b, M = Os), respectively. Crystal structure determination of 5a reveals that the amino function of the chelating 8-aminoquinoline ligand is located adjacent to the reactive Si-Cl bonds of the dichloro(methyl)silyl ligand but no reaction between these functions is observed. However, 5a and 5b react readily with ethanol to give ultimately M(SiMe[OEt]2)Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6a, M = Ru; 6b, M = Os). In the case of ruthenium only, the intermediate ethanolysis product Ru(SiMeCl[OEt])Cl(CO)(PPh3)(κ2(N,N-NC9H6NH2-8) (6c) was also isolated. The crystal structure of 6c was determined. Reaction between 1b and excess 2-aminopyridine results in condensation between the Si-Cl bonds and the N-H bonds with formation of a novel tridentate “NSiN” ligand in the complex Os(κ3(Si,N,N)-SiMe[NH(2-C5H4N)]2)Cl(CO)(PPh3) (7b). Crystal structure determination of 7b shows that the “NSiN” ligand coordinates to osmium with a “facial” arrangement and with chloride trans to the silyl ligand.  相似文献   

7.
Lithium 1,2-bis(trimethylsilyl)hydrazine (1a) reacts with Me3SnCl, Et3SnBr and Bu3SnCl to form bis(trimethylsilyl)(trimethylstannyl)hydrazine (2a), (triethylstannyl)bis(trimethyl silyl)hydrazine (2b) and (tributylstannyl)bis(trimethylsilyl)hydrazine (2c), respectively. Compounds 2a and 2b undergo disproportionation at room temperature to form bis(trimethylsilyl)bis(trimethylstannyl)hydrazine (3a) and bis(triethylstannyl)bis(trimethylsilyl)hydrazine (3b). In contrast, 2c is highly stable and can withstand such a reaction up to 150 °C. The monostannylated products, 2a, 2b and 2c do not get lithiated at NH and instead undergo transmetallation in their reaction with RLi or Li to form lithiumbis(trimethylsilyl)hydrazine (1a).  相似文献   

8.
A straightforward synthesis of (2S)-[3,3-2H2]-proline 1c and (2S,3R)- and (2S,3S)-[3-2H1]-proline, 1b and 1a, respectively, has been devised. The key step of the route to the latter compounds involves highly stereoselective hydrolysis of the silyl enol ethers 3 and 3a, respectively, with protonation (deuteriation) from the re-face of the silyl enol ether.  相似文献   

9.
1-Boraadamantane (1) and 2-ethyl-1-boraadamantane (1(2-Et)) react with bis(trialkylstannyl)ethynes (3), R3Sn-CC-SnR3 with R=Me (a), Et (b), in a 1:1 molar ratio by 1,1-organoboration under very mild conditions to give the 4-methylene-3-borahomoadamantane derivatives 4a,b and 7a,b, respectively, which are dynamic at room temperature with respect to deorganoboration. The compounds 4a,b react further with 3a,b by 1,1-organoboration to the tricyclic butadiene derivatives 5a,b. Attempts to crystallise 4a afforded the product of hydrolysis, the diboroxane 6a which was characterised by X-ray structural analysis. All products were characterised in solution by 1H-, 11B-, 13C- and 119Sn-NMR spectroscopy.  相似文献   

10.
Ramendra Pratap  Vishnu Ji Ram 《Tetrahedron》2007,63(41):10309-10319
An efficient and versatile synthesis of various congested pyridines 3a-h, 6a,b, 8a-n, 10a-g, and 16a,b, and (pyrimidin-4-yl)acetonitriles 13a-g has been delineated by base catalyzed ring transformation of suitably functionalized 2H-pyran-2-ones 1a-h, 5, 7, and 15 by formamidine acetate 2a, acetamidine hydrochloride 2b, S-methylisothiourea 9a, pyrazol-1-yl-carboxamidine 9b, and arylamidine hydrochloride 12 separately in the presence of powdered KOH in dry DMF.  相似文献   

11.
Two new unexpected photochromic compounds were obtained from naphtho[2,1-b]pyran-1-one 1. The reaction of this ketone with the silyl enol ether methyl trimethylsilyl dimethylketene acetal, catalyzed by TiCl4, afforded the photochromic dihydronaphtho[2,1-b]pyranone 2. The Reformatsky reaction of ketone 1 with ethyl bromoacetate led to the formation of the expected alcohol that under acid treatment gave, unexpectedly, the novel photochromic benzocoumarin 6. UV irradiation compounds 2 and 6 in solution provided thermally stable photoproducts that returned to the initial uncoloured forms under visible irradiation. The photochromic behaviour of these compounds and the structures of the photoproducts formed in these reactions were characterized by 1D and 2D NMR.  相似文献   

12.
Thermolysis of substituted methyl 1-methyleneamino-4,5-dioxo-4,5-dihydro-1H-pyrrole-2-carboxylates 2a,b led to substituted dimethyl 3,9-dioxo-1,5,7,11-tetrahydro-1H,7H-dipyrazolo[1,2-a;1′,2′-d][1,2,4,5]tetrazine-1,7-dicarboxylates 4a,b and methyl 2,5-dihydro-5-oxo-1H-pyrazole-3-carboxylates 5a,b as minor products. The structure of compound 4a was determined by X-ray crystallography. The proposed mechanism of this conversion includes generation of (N-methyleneamino)imidoylketenes 6a,b and its intramolecular transformation to azomethine imines—5-oxo-2,5-dihydropyrazole-1-methylium-2-ides 7a,b, which undergo dimerization in head-to-tail manner yielding products 4a,b and partially hydrolyse to compounds 5a,b.  相似文献   

13.
The effectivity of optical switching between anthracene derivatives 3a,b and their intramolecular photocycloadducts 4a,b is impaired by traces of acid. The systematic treatment of 4a,b with an increasing excess of formic acid revealed that—apart from the normal enolether cleavage 4a,b6a,b7a,b—a cleavage with rearrangement of the carbon skeleton can occur: 5b6b′. The driving force is a stability enhancement of the involved carbenium ions 5b5b′. A further increased excess of formic acid leads finally to a competitive ether cleavage in the tetrahydrofuran ring 5b8.  相似文献   

14.
An approach to the synthesis of the cytotoxic natural product auripyrone A 1 via the cyclization of an alcohol onto a γ-pyrone in 3 is described. The bis(pyrone) alcohol 3 was prepared efficiently from the advanced aldolate 4 via silyl ether cleavage, oxidation, pyrone formation, and PMB ether removal. Instead of providing auripyrone A 1, the attempted cyclization of 3 gave the product of 1,5-acyl migration 8. Model studies show this to be a general process; therefore, cyclization of an alcohol on such a hindered γ-pyrone under normal conditions is very difficult.  相似文献   

15.
The benzene and quinoxaline fused Δ2-1,2,3-triazolines 1a and 1b were synthesized in good yields using Knoevenagel condensation and intramolecular 1,3-dipolar cycloaddition as two of the key reactions. Photolysis (254 nm) of Δ2-1,2,3-triazoline 1a or 1b in acetonitrile led to the homolytic cleavage of nitrogen that generated diethyl diazomalonate 7, highly reactive intermediates aziridines 8a,b, and isoindoles B. The latter two species subsequently underwent rearrangement to give the nitrogen extrusion products 9a,b, and polymers. Furthermore, the reactive intermediates were trapped by dienophiles to give the corresponding cycloadducts. Subsequent rearrangement of the N-bridged cycloadducts gave N-substituted pyrrolo[3,4-b]quinoxalines 12b and 15b in 6% and 9% yields, respectively. Irradiation of 1a in the presence of fumaronitrile led to the isolation of cycloadduct 16a with retention of stereochemistry. Thermal reaction of 1b gave more nitrogen extruded product 9b (58-63% yield) than that by photolysis (5-23% yield), which implied that zwitterionic intermediate might be involved in the former.  相似文献   

16.
A series of 2-(1-isopropyl-2-benzimidazolyl)-6-(1-aryliminoethyl)pyridyl metal complexes [iron (II) (1a-6a), cobalt (II) (1b-6b) and nickel (II) (1c-6c)] were synthesized and fully characterized by elemental and spectroscopic analyses. Single-crystal X-ray diffraction analyses of five coordinated complexes 5a, 3b, 5b, 1c and 2c reveal 5a and 5b as distorted trigonal-bipyramidal geometry, and 3b, 1c and 2c as distorted square pyramidal geometry. All complexes performed ethylene reactivity with the assistance of various organoaluminums. The iron complexes displayed good activities in the presence of MAO and MMAO. Upon activated by Et2AlCl, the cobalt analogues showed moderate ethylene reactivity, while the nickel analogues exhibited relatively higher activities.  相似文献   

17.
Ashraf A Abbas 《Tetrahedron》2004,60(7):1541-1548
The 13-hydroxy macrocycles 7a-d were prepared in 40-50% yields by the condensation of 1,ω-bis(4-amino-1,2,4-triazol-3-ylsulfany)alkanes 2a-d with 1,3-bis(2-formyphenoxy)-2-propanol (9). Acylation of 7a-d with 2-chloroacetylchloride gave the corresponding esters 11a,b. Amination of 11a,b with different amines in acetone furnished exclusively the target lariat macrocycles 12a,b and 13 in 60-70% yields. Reaction of 2 equiv. of the macrocycles 11a,b with 1 equiv. of piperazine afforded the novel bis macrocyles 14a,b in 50-60% yields. Reduction of 7a-d with NaBH4 afforded the corresponding 13-hydroxyazathia crown ethers 15a-d in 65-70% yields.  相似文献   

18.
Treatment of the functionalized Schiff base ligands with boronic esters 1a, 1b, 1c and 1d with palladium (II) acetate in toluene gave the polynuclear cyclometallated complexes 2a, 2b, 2c and 2d, respectively, as air-stable solids, with the ligand as a terdentate [C,N,O] moiety after deprotonation of the -OH group. Reaction of 1j with palladium (II) acetate in toluene gave the dinuclear cyclometallated complex 5j. Reaction of the cyclometallated complexes with triphenylphosphine gave the mononuclear species 3a, 3b, 3c, 3d and 6j with cleavage of the polynuclear structure. Treatment of 2c with the diphosphine Ph2PC5H4FeC5H4PPh2 (dppf) in 1:2 molar ratio gave the dinuclear cyclometallated complex 4c as an air-stable solid.Deprotection of the boronic ester can be easily achieved; thus, by stirring the cyclometallated complex 3a in a mixture of acetone/water, 3e is obtained in good yield. Reaction of the tetrameric complex 2a with cis-1,2-cyclopentanediol in chloroform gave complex 2c after a transesterification reaction. Under similar conditions complexes 3a and 3d behaved similarly: with cis-1,2-cyclopentanediol, pinacol or diethanolamine complexes 3c, 3b, 3g and 3f, were obtained. The pinacol derivatives 3b and 3g experiment the Petasis reaction with glyoxylic acid and morpholine in dichloromethane to give complexes 3h, and 3i, respectively.  相似文献   

19.
4-Iodoanisoles 3a,b, 3d and 4-bromoanisoles 4a-d were readily obtained. An extreme steric hindrance precluded obtaining 3c. Catalytic borylation of 3a,b, 3d followed by hydrolysis of boronic ester 26a,b, 26d easily provided the boronic acids 5a,b, 5d. Compounds 5a and 5d were also synthesised, starting from 4a and 4d, by halogen/metal exchange. Because of a too important steric hindrance, this last reaction failed with 4c and 4b led to the unexpected but stable boronic ester 6. The final obtaining of 5b required a strongly basic hydrolysis with heating.  相似文献   

20.
By oxidation of 3-thioderivatives of 1,2,4-triazine 1a,b 3-alkylsulfonic derivatives 2a,b were obtained. Interaction of the sulfonic derivative 2a with indole leads to 3-oxo-5-indolyl-5-phenyl-as-triazine 4. The sulfone 2a reacts with 1-ethyl-2,6-dimethylquinolinium iodide to give 3-(1-ethyl-6-methyl-1,2-dihydroquinoline-2-methylene)-5-phenyl-1,2,4-triazine 5. The 3-morpholino- 3 and 3-thioderivatives 6, 7a,b of as-triazine were obtained by interaction of the sulfone 2 with morpholine and organic boron-containing thiols. The crystal structure of boron-containing derivative of as-triazine 7b was investigated by X-ray analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号