首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Choosing a suitable risk measure to optimize an option portfolio’s performance represents a significant challenge. This paper is concerned with illustrating the advantages of Higher order coherent risk measures to evaluate option risk’s evolution. It discusses the detailed implementation of the resulting dynamic risk optimization problem using stochastic programming. We propose an algorithmic procedure to optimize an option portfolio based on minimization of conditional higher order coherent risk measures. Illustrative examples demonstrate some advantages in the performance of the portfolio’s levels when higher order coherent risk measures are used in the risk optimization criterion.  相似文献   

2.
In the present study, a modified variant of Differential Evolution (DE) algorithm for solving multi-objective optimization problems is presented. The proposed algorithm, named Multi-Objective Differential Evolution Algorithm (MODEA) utilizes the advantages of Opposition-Based Learning for generating an initial population of potential candidates and the concept of random localization in mutation step. Finally, it introduces a new selection mechanism for generating a well distributed Pareto optimal front. The performance of proposed algorithm is investigated on a set of nine bi-objective and five tri-objective benchmark test functions and the results are compared with some recently modified versions of DE for MOPs and some other Multi Objective Evolutionary Algorithms (MOEAs). The empirical analysis of the numerical results shows the efficiency of the proposed algorithm.  相似文献   

3.
We investigate mean-variance optimization problems that arise in portfolio selection. Restrictions on intermediate expected values or variances of the portfolio are considered. Some explicit procedures for obtaining the solution are presented. The main advantage of this technique is that it is possible to control the intermediate behavior of a portfolio’s return or variance. Some examples illustrating these situations are presented. The first author received financial support from CNPq (Brazilian National Research Council) Grants 472920/03-0 and 304866/03-2, FAPESP (Research Council of the State of S?o Paulo) Grant 03/06736-7, PRONEX Grant 015/98, and IM-AGIMB.  相似文献   

4.
This paper presents a method for solving multiperiod investment models with downside risk control characterized by the portfolio’s worst outcome. The stochastic programming problem is decomposed into two subproblems: a nonlinear optimization model identifying the optimal terminal wealth distribution and a stochastic linear programming model replicating the identified optimal portfolio wealth. The replicating portfolio coincides with the optimal solution to the investor’s problem if the market is frictionless. The multiperiod stochastic linear programming model tests for the absence of arbitrage opportunities and its dual feasible solutions generate all risk neutral probability measures. When there are constraints such as liquidity or position requirements, the method yields approximate portfolio policies by minimizing the initial cost of the replication portfolio. A numerical example illustrates the difference between the replicating result and the optimal unconstrained portfolio.  相似文献   

5.
The problem of portfolio selection is a standard problem in financial engineering and has received a lot of attention in recent decades. Classical mean–variance portfolio selection aims at simultaneously maximizing the expected return of the portfolio and minimizing portfolio variance. In the case of linear constraints, the problem can be solved efficiently by parametric quadratic programming (i.e., variants of Markowitz’ critical line algorithm). However, there are many real-world constraints that lead to a non-convex search space, e.g., cardinality constraints which limit the number of different assets in a portfolio, or minimum buy-in thresholds. As a consequence, the efficient approaches for the convex problem can no longer be applied, and new solutions are needed.In this paper, we propose to integrate an active set algorithm optimized for portfolio selection into a multi-objective evolutionary algorithm (MOEA). The idea is to let the MOEA come up with some convex subsets of the set of all feasible portfolios, solve a critical line algorithm for each subset, and then merge the partial solutions to form the solution of the original non-convex problem. We show that the resulting envelope-based MOEA significantly outperforms existing MOEAs.  相似文献   

6.
《Optimization》2012,61(11):1761-1779
In this article, we study reward–risk ratio models under partially known message of random variables, which is called robust (worst-case) performance ratio problem. Based on the positive homogenous and concave/convex measures of reward and risk, respectively, the new robust ratio model is reduced equivalently to convex optimization problems with a min–max optimization framework. Under some specially partial distribution situation, the convex optimization problem is converted into simple framework involving the expectation reward measure and conditional value-at-risk measure. Compared with the existing reward–risk portfolio research, the proposed ratio model has two characteristics. First, the addressed problem combines with two different aspects. One is to consider an incomplete information case in real-life uncertainty. The other is to focus on the performance ratio optimization problem, which can realize the best balance between the reward and risk. Second, the complicated optimization model is transferred into a simple convex optimization problem by the optimal dual theorem. This indeed improves the usability of models. The generation asset allocation in power systems is presented to validate the new models.  相似文献   

7.
Multi-objective evolutionary algorithms (MOEAs) have become an increasingly popular tool for design and optimization tasks in real-world applications. Most of the popular baseline algorithms are pivoted on the use of Pareto-ranking (that is empirically inefficient) to improve the convergence to the Pareto front of a multi-objective optimization problem. This paper proposes a new ε-dominance MOEA (EDMOEA) which adopts pair-comparison selection and steady-state replacement instead of the Pareto-ranking. The proposed algorithm is an elitist algorithm with a new preservation technique of population diversity based on the ε-dominance relation. It is demonstrated that superior results could be obtained by the EDMOEA compared with other algorithms: NSGA-II, SPEA2, IBEA, ε-MOEA, PESA and PESA-II on test problems. The EDMOEA is able to converge to the Pareto optimal set much faster especially on the ZDT test functions with a large number of decision variables.  相似文献   

8.
When solving multi-objective optimization problems (MOPs) with big data, traditional multi-objective evolutionary algorithms (MOEAs) meet challenges because they demand high computational costs that cannot satisfy the demands of online data processing involving optimization. The gradient heuristic optimization methods show great potential in solving large scale numerical optimization problems with acceptable computational costs. However, some intrinsic limitations make them unsuitable for searching for the Pareto fronts. It is believed that the combination of these two types of methods can deal with big MOPs with less computational cost. The main contribution of this paper is that a multi-objective memetic algorithm based on decomposition for big optimization problems (MOMA/D-BigOpt) is proposed and a gradient-based local search operator is embedded in MOMA/D-BigOpt. In the experiments, MOMA/D-BigOpt is tested on the multi-objective big optimization problems with thousands of variables. We also combine the local search operator with other widely used MOEAs to verify its effectiveness. The experimental results show that the proposed algorithm outperforms MOEAs without the gradient heuristic local search operator.  相似文献   

9.
We study the problem of portfolio insurance from the point of view of a fund manager, who guarantees to the investor that the portfolio value at maturity will be above a fixed threshold. If, at maturity, the portfolio value is below the guaranteed level, a third party will refund the investor up to the guarantee. In exchange for this protection, the third party imposes a limit on the risk exposure of the fund manager, in the form of a convex monetary risk measure. The fund manager therefore tries to maximize the investor’s utility function subject to the risk-measure constraint. We give a full solution to this non-convex optimization problem in the complete market setting and show in particular that the choice of the risk measure is crucial for the optimal portfolio to exist. Explicit results are provided for the entropic risk measure (for which the optimal portfolio always exists) and for the class of spectral risk measures (for which the optimal portfolio may fail to exist in some cases).  相似文献   

10.
Design of a motorcycle frame using neuroacceleration strategies in MOEAs   总被引:2,自引:0,他引:2  
Designing a low-budget lightweight motorcycle frame with superior dynamic and mechanical properties is a complex engineering problem. This complexity is due in part to the presence of multiple design objectives—mass, structural stress and rigidity—, the high computational cost of the finite element (FE) simulations used to evaluate the objectives, and the nature of the design variables in the frame’s geometry (discrete and continuous). Therefore, this paper presents a neuroacceleration strategy for multiobjective evolutionary algorithms (MOEAs) based on the combined use of real (FE simulations) and approximate fitness function evaluations. The proposed approach accelerates convergence to the Pareto optimal front (POF) comprised of nondominated frame designs. The proposed MOEA uses a mixed genotype to encode discrete and continuous design variables, and a set of genetic operators applied according to the type of variable. The results show that the proposed neuro-accelerated MOEAs, NN-NSGA II and NN-MicroGA, improve upon the performance of their original counterparts, NSGA II and MicroGA. Thus, this neuroacceleration strategy is shown to be effective and probably applicable to other FE-based engineering design problems.  相似文献   

11.
This work discusses robustness assessment during multi-objective optimization with a Multi-Objective Evolutionary Algorithm (MOEA) using a combination of two types of robustness measures. Expectation quantifies simultaneously fitness and robustness, while variance assesses the deviation of the original fitness in the neighborhood of the solution. Possible equations for each type are assessed via application to several benchmark problems and the selection of the most adequate is carried out. Diverse combinations of expectation and variance measures are then linked to a specific MOEA proposed by the authors, their selection being done on the basis of the results produced for various multi-objective benchmark problems. Finally, the combination preferred plus the same MOEA are used successfully to obtain the fittest and most robust Pareto optimal frontiers for a few more complex multi-criteria optimization problems.  相似文献   

12.
There is a large number of optimisation problems in theoretical and applied finance that are difficult to solve as they exhibit multiple local optima or are not ‘well-behaved’ in other ways (e.g., discontinuities in the objective function). One way to deal with such problems is to adjust and to simplify them, for instance by dropping constraints, until they can be solved with standard numerical methods. We argue that an alternative approach is the application of optimisation heuristics like Simulated Annealing or Genetic Algorithms. These methods have been shown to be capable of handling non-convex optimisation problems with all kinds of constraints. To motivate the use of such techniques in finance, we present several actual problems where classical methods fail. Next, several well-known heuristic techniques that may be deployed in such cases are described. Since such presentations are quite general, we then describe in some detail how a particular problem, portfolio selection, can be tackled by a particular heuristic method, Threshold Accepting. Finally, the stochastics of the solutions obtained from heuristics are discussed. We show, again for the example from portfolio selection, how this random character of the solutions can be exploited to inform the distribution of computations.  相似文献   

13.
In general Banach spaces, we consider a vector optimization problem (SVOP) in which the objective is a set-valued mapping whose graph is the union of finitely many polyhedra. We establish some results on structure and connectedness of the weak Pareto solution set, Pareto solution set, weak Pareto optimal value set and Pareto optimal value set of (SVOP). In particular, we improve and generalize Arrow, Barankin and Blackwell’s classical results on linear vector optimization problems in Euclidean spaces.  相似文献   

14.
Swarm intelligence is a research branch that models the population of interacting agents or swarms that are able to self-organize. An ant colony, a flock of birds or an immune system is a typical example of a swarm system. Bees’ swarming around their hive is another example of swarm intelligence. Artificial Bee Colony (ABC) Algorithm is an optimization algorithm based on the intelligent behaviour of honey bee swarm. In this work, ABC algorithm is used for optimizing multivariable functions and the results produced by ABC, Genetic Algorithm (GA), Particle Swarm Algorithm (PSO) and Particle Swarm Inspired Evolutionary Algorithm (PS-EA) have been compared. The results showed that ABC outperforms the other algorithms.  相似文献   

15.
A relevant financial planning problem is the periodical rebalance of a portfolio of assets such that the portfolio’s total value exhibits certain characteristics. This problem can be modelled using a transition graph G to represent the future state space evolution of the corresponding economy and mathematically formulated as a linear programming problem. We present two different mathematical formulations of the problem. The first considers explicitly the set of the possible scenarios (scenario-based approach), while the second considers implicitly the whole set of scenarios provided by the graph G (graph-based approach). Unfortunately, for both the formulations the size of the corresponding linear programs can be huge even for simple financial problems. However, the graph-based approach seems to be a more powerful model, since it allows to consider a huge number of scenarios in a very compact formulation. The purpose of this paper is to present both heuristic and exact methods for the solution of large-scale multi-period financial planning problems using the graph-based model. In particular, in this paper we propose lower and upper bounds and three exact methods based on column, row and column/row generation, respectively. Since the methods based on column/row generation exploits simultaneously both the primal and the dual structure of the problem we call it Criss-Cross generation method. Computational results are given to prove the effectiveness of the proposed methods.   相似文献   

16.
We study the problem of portfolio insurance from the point of view of a fund manager, who guarantees to the investor that the portfolio value at maturity will be above a fixed threshold. If, at maturity, the portfolio value is below the guaranteed level, a third party will refund the investor up to the guarantee. In exchange for this protection, the third party imposes a limit on the risk exposure of the fund manager, in the form of a convex monetary risk measure. The fund manager therefore tries to maximize the investor’s utility function subject to the risk-measure constraint. We give a full solution to this non-convex optimization problem in the complete market setting and show in particular that the choice of the risk measure is crucial for the optimal portfolio to exist. Explicit results are provided for the entropic risk measure (for which the optimal portfolio always exists) and for the class of spectral risk measures (for which the optimal portfolio may fail to exist in some cases).  相似文献   

17.
This paper develops a λ mean-hybrid entropy model to deal with portfolio selection problem with both random uncertainty and fuzzy uncertainty. Solving this model provides the investor a tradeoff frontier between security return and risk. We model the security return as a triangular fuzzy random variable, where the investor’s individual preference is reflected by the pessimistic-optimistic parameter λ. We measure the security risk using the hybrid entropy in this model. Algorithm is developed to solve this bi-objective portfolio selection model. Beside, a numerical example is also presented to illustrate this approach.  相似文献   

18.
The use of surrogate based optimization (SBO) is widely spread in engineering design to reduce the number of computational expensive simulations. However, “real-world” problems often consist of multiple, conflicting objectives leading to a set of competitive solutions (the Pareto front). The objectives are often aggregated into a single cost function to reduce the computational cost, though a better approach is to use multiobjective optimization methods to directly identify a set of Pareto-optimal solutions, which can be used by the designer to make more efficient design decisions (instead of weighting and aggregating the costs upfront). Most of the work in multiobjective optimization is focused on multiobjective evolutionary algorithms (MOEAs). While MOEAs are well-suited to handle large, intractable design spaces, they typically require thousands of expensive simulations, which is prohibitively expensive for the problems under study. Therefore, the use of surrogate models in multiobjective optimization, denoted as multiobjective surrogate-based optimization, may prove to be even more worthwhile than SBO methods to expedite the optimization of computational expensive systems. In this paper, the authors propose the efficient multiobjective optimization (EMO) algorithm which uses Kriging models and multiobjective versions of the probability of improvement and expected improvement criteria to identify the Pareto front with a minimal number of expensive simulations. The EMO algorithm is applied on multiple standard benchmark problems and compared against the well-known NSGA-II, SPEA2 and SMS-EMOA multiobjective optimization methods.  相似文献   

19.
We study portfolio credit risk management using factor models, with a focus on optimal portfolio selection based on the tradeoff of expected return and credit risk. We begin with a discussion of factor models and their known analytic properties, paying particular attention to the asymptotic limit of a large, finely grained portfolio. We recall prior results on the convergence of risk measures in this “large portfolio approximation” which are important for credit risk optimization. We then show how the results on the large portfolio approximation can be used to reduce significantly the computational effort required for credit risk optimization. For example, when determining the fraction of capital to be assigned to particular ratings classes, it is sufficient to solve the optimization problem for the large portfolio approximation, rather than for the actual portfolio. This dramatically reduces the dimensionality of the problem, and the amount of computation required for its solution. Numerical results illustrating the application of this principle are also presented. JEL Classification G11  相似文献   

20.
Many risk measures have been recently introduced which (for discrete random variables) result in Linear Programs (LP). While some LP computable risk measures may be viewed as approximations to the variance (e.g., the mean absolute deviation or the Gini’s mean absolute difference), shortfall or quantile risk measures are recently gaining more popularity in various financial applications. In this paper we study LP solvable portfolio optimization models based on extensions of the Conditional Value at Risk (CVaR) measure. The models use multiple CVaR measures thus allowing for more detailed risk aversion modeling. We study both the theoretical properties of the models and their performance on real-life data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号