首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an imaging technique developed to study the strain localization phenomena that occur during the tension of thin, flat steel samples. The data are processed using digital speckle image correlation to derive the two in-plane components of the displacement vectors. The authors observe that the calculation of the intercorrelation function reveals a systematic error and propose a numerical method to limit its influence. Plastic incompressibility and thin-sheet assumptions are used to derive the third displacement component and, hence, the various strain and strain rate components. Numerous checks are presented at each step in processing the data to determine the final accuracy of the strain measurements. It is estimated that this accuracy is quite sufficient to track the inception and the development of localization. Examples of possible application are presented for mild steels whose strain localization mechanisms appear to be precocious and gradual.  相似文献   

2.
3.
An experimental strain analysis of the losipescu shear test specimen was performed, utilizing a 20-ply AS4/3501-6 carbon/epoxy unidirectional composite. Using three-element strain-gage rosettes, it was shown that the presence of loading-point-induced transverse normal strains in the gage section do not affect the measured shear strain. Thus, the shear modulus determined using the standard notch specimen is not affected. Likewise, modulus determination is not influenced by cracking at the notch tips, since this occurs at strains beyond the range over which modulus is determined. To further evaluate the effect of notch-tip cracking, material was removed adjacent to the standard V-notches where these cracks initiate. The measured shear strength was unaffected by removing this material, although the shear modulus was reduced slightly (by as much as eight percent for the more grossly exaggerated geometries). E.Q. Lewis, former graduate student, is now Engineer, Lockheed Corporation.  相似文献   

4.
An X-ray diffraction technique was employed to determine the residual stresses introduced by cold working a fastener hole in a 6-mm thick 2024-T351 aluminum plate. The radial and tangenital residual stresses were measured at both faces of the plate and the measurements compared with the results from a two-dimensional axisymmetric finite-element model. The comparisons were favorable, although modifying the finite-element model to simulate the X-ray process provided better agreement. Experimental determinations of residual stresses showed differences between the two faces of the plate. This feature was attributed to the directional nature of the cold-working process. Paper was presented at the 1994 SEM Spring Conference on Experimental Mechanics held in Baltimore, MD on June 8–10.  相似文献   

5.
This work deals with the characterization of the kinematic work-hardening of a bake-hardening steel. A shear test device has been designed and its use for the characterization of the work-hardening of sheet metals is described. Two main results are presented. Firstly, a local strain measurement, based on the following of three dots drawn on the gauge area, gives the evolution of the strain tensor eigenvalues during the test. It is shown, by comparing the theoretical kinematics of simple shear with a slightly perturbated one, that the strain state is close to the ideal one in the center of the gauge area. Secondly, reversal of the shear direction is performed after several prestrain and the evolution of the kinematic work-hardening with the equivalent plastic strain has been identified using an anisotropic elasto-viscoplastic model of Hill 1948 type. Isotropic and kinematic contributions of the work-hardening are also calculated from loading–unloading tensile tests and are compared to those obtained from the simple shear tests. The results show a discrepancy between both identification for the isotropic and the kinematic hardening. However, they are in agreement concerning the evolution of the global work-hardening.  相似文献   

6.
White-light speckle photography was applied to measure the viscoplastic deformation of a proposed nuclear-waste repository. The repository vaults are carved into bedded salt deep in the earth, and deform extremely slowly. The research demonstrates the feasibility of using whole-field techniques to detect mine wall strains, confirms certain, but not all, measurements of point-by-point instruments, and also confirms the predictions of a site-specific numerical model.Paper was presented at the 1994 SEM Spring Conference on Experimental Mechanics held in Baltimore, MD on June 6–9.  相似文献   

7.
On the use of nickel foil strain gages at varying temperatures   总被引:1,自引:0,他引:1  
When a strain gage made of nickel foil attached on the surface of a specimen is subjected to repeated loads, the elastic stress is measured by observing slip-bands in the foil resulting from repeated strain. Calibration studies with rotating-bending tests at various temperatures between room temperature and 350°C are performed on round steel bars with nickel foil. The relation between the threshold stress for the first appearance of slip-bands and the number of stress cycles is examined at varying temperatures, which provides the calibration values of the nickel foil tested at varying temperatures. Assuming that the first appearance of slip-bands is based on the linear cumulative damage law, the calibration values at varying temperatures are calculated from those established by the calibration tests at several constant temperatures. It is found that the calculated calibration values agree well with the results obtained by the calibration tests at varying temperatures and that the calculation applying the linear cumulative damage law is a useful method to presume the calibration values at varying temperatures without performing the experiment.  相似文献   

8.
104s-1应变率下SHPB系统实验相关问题探讨   总被引:2,自引:2,他引:0  
利用小直径(3.17mm)的SHPB系统初步获得两种较高强度材料(一种特种钢和一种WMo合金)应变率达到104s-1以上的动态压缩应力 应变曲线。通过对这次实验过程及结果的观察和分析,对高应变率实验存在的几个问题进行了探讨。  相似文献   

9.
试验机弹性储能对岩石力学性能测试的影响   总被引:5,自引:0,他引:5  
在材料试验机上进行岩石力学性能测试时,如何准确测量岩石的变形是整个测试分析的基础.为了具体考察试验机刚度对岩石变形测量的影响程度,在两台不同的试验机上进行了岩石的单轴压缩试验,通过对加卸载过程中试验系统及岩石能量变化的分析,详细研究了试验系统弹性储能对岩石变形测量的影响,进而给出了基于试验机刚度的修正计算方法,来确定岩石在测试过程中的变形.  相似文献   

10.
In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stainless steel (AISI 316L) and one nickel-base alloy (Alloy 617) have been investigated. Scanning electron microscopy related techniques as electron channelling contrast imaging and electron backscattering diffraction have been used to study the damage and fracture micromechanisms. For both alloys the dominante damage micromechanisms are slip bands and planar slip interacting with grain bounderies or precipitates causing strain concentrations. The dominante fracture micromechanism when using a slow strain rate at elevated temperature, is microcracks at grain bounderies due to grain boundery embrittlement caused by precipitates. The decrease in strain rate seems to have a small influence on dynamic strain ageing at 650°C.  相似文献   

11.
Strain and damage interactions during tearing of a ductile Al-alloy with high work hardening are assessed in situ and in 3D combining two recently developed experimental techniques, namely, synchrotron laminography and digital volume correlation. Digital volume correlation consists of registering 3D laminography images. Via simultaneous assessments of 3D strain and damage at a distance of 1-mm ahead of a notch root of a thin Compact Tension-like specimen, it is found that parallel crossing slant strained bands are active from the beginning of loading in a region where the crack will be slanted. These bands have an intermittent activity but are stable in space. Even at late stages of deformation strained bands can stop their activity highlighting the importance of plasticity on the failure process rather than damage softening. One void is followed over the loading history and seen to grow and orient along the slant strained band at very late stages of deformation. Void growth and strain are quantified. Gurson–Tvergaard–Needleman-type simulations using damage nucleation for shear, which is based on the Lode parameter, are performed and capture slant fracture but not the initial strain fields and in particular the experimentally found slant bands. The band formation and strain distribution inside and outside the bands are discussed further using plane strain simulations accounting for plastic material heterogeneity in soft zones.  相似文献   

12.
Experiments and theory in strain gradient elasticity   总被引:2,自引:0,他引:2  
Conventional strain-based mechanics theory does not account for contributions from strain gradients. Failure to include strain gradient contributions can lead to underestimates of stresses and size-dependent behaviors in small-scale structures. In this paper, a new set of higher-order metrics is developed to characterize strain gradient behaviors. This set enables the application of the higher-order equilibrium conditions to strain gradient elasticity theory and reduces the number of independent elastic length scale parameters from five to three. On the basis of this new strain gradient theory, a strain gradient elastic bending theory for plane-strain beams is developed. Solutions for cantilever bending with a moment and line force applied at the free end are constructed based on the new higher-order bending theory. In classical bending theory, the normalized bending rigidity is independent of the length and thickness of the beam. In the solutions developed from the higher-order bending theory, the normalized higher-order bending rigidity has a new dependence on the thickness of the beam and on a higher-order bending parameter, bh. To determine the significance of the size dependence, we fabricated micron-sized beams and conducted bending tests using a nanoindenter. We found that the normalized beam rigidity exhibited an inverse squared dependence on the beam's thickness as predicted by the strain gradient elastic bending theory, and that the higher-order bending parameter, bh, is on the micron-scale. Potential errors from the experiments, model and fabrication were estimated and determined to be small relative to the observed increase in beam's bending rigidity. The present results indicate that the elastic strain gradient effect is significant in elastic deformation of small-scale structures.  相似文献   

13.
A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying flexural stiffness and an edge crack, the SSEM is used to detect the crack location effectively by numerical modal shapes. As a complicated beam, the glass fiber-reinforced composite model of a wind turbine blade is studied based on an experimental modal analysis. The SSEM is used to calculate the damage index from the measured modal parameters and locate the damage position in the blade model successfully. The results indicate that the SSEM based on the modal shapes can be used to detect the damages in complicated beams or beam-like structures for engineering applications.  相似文献   

14.
李喜德  杨燕  魏成  彭云  张钊 《实验力学》2006,21(4):427-438
本文基于光学和扫描显微平台,介绍了本研究组在微尺度实验力学检测技术和设备方面的最新研究成果。在检测技术方面涉及显微散斑干涉技术、微标记阵列检测技术、晶粒变形分析技术、光学探针动静态变形分析技术;在检测系统和装置方面介绍了新近开发的双视场薄膜检测系统、散斑微干涉系统、微标记检测平台、AFM和SEM单轴拉伸装置、三维微定位与加载系统、微力传感器及其标定装置、微动平台驱动装置等。探讨了微尺度实验力学检测中的问题和新的检测技术,给出了一些典型的应用和相关装置。  相似文献   

15.
In this paper we shall examine the correlations among the external froce, variable damping and variable restoring force. Some new results are obtained.  相似文献   

16.
The upper limit of the achievable constant strain rates in linearly elastic specimens loaded by a split Hopkinson pressure bar is estimated based on the specimen properties and a linear ramp loading. The criterion for a plateau of constant strain rate is derived and discussed. Dynamic experimental results on an S-2 glass/SC15 composite and polymethyl-methacrylate subjected to various ramp loadings verify the modeling results.  相似文献   

17.
The localized deformation field of high density polyethylene and polypropylene during a tensile test accompanied by neck propagation was quantitatively evaluated based on the network digital image correlation method. In the proposed method, the continuity of the deformation field around a point of interest was introduced for accurate evaluation of the displacement. The accuracy of the proposed method was verified through test images. Using the proposed method, the development of a non-uniform displacement field during tensile tests was evaluated from sequential digital images. The local strain rate was almost uniform until the nominal stress reached its maximum value. After the maximum stress was reached, non-uniform deformation developed at a part of the gauge region of the specimen. A decrease in nominal stress induced a reduction of the local strain rate at regions other than the necked zone. In this study, the cross section average local true stress, strain, and strain rate can be evaluated from the local displacement field. Thus, the relationship between these quantities was evaluated during the tensile tests. Using the proposed method, the local response under wide ranges of strain and strain rate can be evaluated from a few test conditions of tensile strain rate and a small range of tensile strain. Finally, the relationships between gradients of stress, strain, and strain rate under uniaxial tension are discussed. These non-local quantities deviated from those predicted by constitutive equations when the domain size used to evaluate the local quantities was large.  相似文献   

18.
Damping is the internal transfer of kinetic energy to other forms of energy. Today, most methods use either bending or torsional vibration to measure damping. This means that the strain field in the specimen is nonhomogeneous. If the damping of the tested material is linear, strain-independent, the values acquired with these traditional methods will be equal to the intrinsic material damping of the material. If, however, the damping is strain-dependent, nonlinear, the measured value will be an average of the damping of the specimen, and not equal to its intrinsic material damping. To address this problem, a method is required to experimentally determine the damping in uniaxial tension in order to produce the same strain level in all parts of the test specimen and hence obtain a measurement of the intrinsic material damping. Using such a method, it is possible to view the material damping as the phase angle between the stress and the strain in a harmonic oscillation. In this paper, a method is suggested for measuring this phase shift in uniaxial tension to determine the material damping properties. It uses a tensile test machine, an optical fiber Bragg grating technique and a lock-in amplifier. Measurements with the phase shift technique have been suggested previously, but its performance envelope has been overestimated. In this paper, the performance envelope is discussed and restricted. It is shown that the envelope depends on the specimen length, loss factor and test frequency. An optical strain measurement method is also believed to help avoid many electrical measurement problems seen with the originally proposed method.  相似文献   

19.
20.
This paper presents a new approach using Artificial Neural Networks (ANNs) models to simulate the response during nanohardness tests of a variety of materials with nonlinear behavior. The ANNs continuous input and output variables usually include material parameters, indentation deflection, and resisting force. Different ANN models, including dimensionless input/output variables, are generated and trained with discrete finite-element (FE) simulations with different geometries and nonlinear material parameters. Only the monotonic loading part of the load–displacement indentation response is used to generate the trained ANN models. This is a departure from classical indentation simulations or tests where typically the unloading portion is used to determine the stiffness and hardness. The experimental part of this study includes nanoindentation tests performed on a silicon (Si) substrate with and without a nanocrystalline copper (Cu) film. The new ANN models are used to back-calculate (inverse problem) the in situ nonlinear material parameters for different copper material systems. The results are compared with available data in the literature. The proposed FE–ANN modeling approach is very effective and can be used in calibrating and predicting the in situ inelastic material properties using the monotonic part of the indentation response and for depths above 50 nm where the overall resisting force represents a continuum response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号