首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以磺化间规聚苯乙烯(SsPS)为增容剂,将间规聚苯乙烯(sPS)和尼龙6/改性蒙脱土纳米复合物(PA6-MTA)共混,得到综合性能优良的新型多组分聚合物/蒙脱土纳米复合材料(sPS/PA6/SsPS/MTA)。用DSC、DMA、WAXD及力学性能测试仪研究了纳米复合材料的结构与性能。TEM测定证明了蒙脱土在基体中的层厚分布为10-50nm。  相似文献   

2.
短链分子交换粘土纳米级复合材料合成和表征   总被引:4,自引:0,他引:4  
石恒真 《应用化学》1997,14(2):63-65
短链分子交换粘土纳米级复合材料合成和表征石恒真*LanTiePinnavaiaT.J.(河南周口师范高等专科学校化学系周口466000)(美国密执安州立大学化学系)关键词嵌入,粘土,纳米级复合材料,合成,表征1996-06-07收稿,1996-12-...  相似文献   

3.
通过将改性的纳米高吸热剂炭黑(CB)添加到对苯二甲酸乙二醇酯(PET)中进行原位聚合反应,得到PET-CB纳米复合材料.采用差热扫描量热法(DSC)、热重分析法(TGA)、热态偏光显微镜(POM)、扫描电镜(SEM)、红外光谱等测试手段对PET-CB纳米复合材料的结构和性能进行了分析和表征.结果表明:纳米材料在复合材料...  相似文献   

4.
通过原位聚合法制备了本质阻燃聚苯乙烯[P(St-co-AEPPA)]/有机改性蒙脱土(OMMT)纳米复合物[P(St-co-AEPPA)/OMMT], 并用普通聚苯乙烯/有机改性蒙脱土(PS/OMMT)复合物作为对比实验, 研究了含磷、氮单体丙烯酸羟乙基-苯氧基-二乙基磷酰胺(AEPPA)和OMMT等添加物对本质阻燃聚苯乙烯性能的影响.用X射线衍射仪(XRD)和透射电子显微镜(TEM)分析了复合材料的结构与形貌, 并对OMMT在基体中的分散机理进行了讨论.用差示扫描量热仪(DSC)、热重分析(TGA)和微型量热仪(MCC)研究了材料的热性能和燃烧性能.结果表明, AEPPA和OMMT能够显著提高基体的热稳定性和阻燃性.  相似文献   

5.
聚苯乙烯/蒙脱土纳米复合材料的自组装行为   总被引:5,自引:0,他引:5  
聚合物/层状硅酸盐(PLS)纳米复合材料由于具有常规复合材料所没有的结构、形态以有较常规聚合物基复合材料更优异的物理力学性能等而引起人们的关注^[1],但以往文献^[1-3]主要报道PLS纳米复合材料的制备与性能表征,对于熔融加工过程中粘土粒子吸高分子的取向和结构研究很少。作者等^[4-6]发现了剥离型聚苯乙烯(PS)/蒙脱土纳米复合材料中的剪切诱导有序结构,并采用广角X射线衍射法(WAXD)、透射电镜法(TEM)和红外二向色性法对其形成机理进行了研究。结果表明,该有序结构的主要来源是分散在PS基体中的蒙脱土初级粒子(Primary particles)内部片层的规整排列以及沿平行于样品表面方面的平面取向,PS的苯环平面平行剪切流动方向取向,而烷项链未见明显取向。本文报道该纳米复合材料的剪切诱导有序结构在升温过程中出现的自组装行为,并用原位升温X射线衍射法和红外二向色性法对蒙脱土初级粒子的规整度以及PS的苯环和烷基链在升温过程中的取向行为进行了研究,在此基础上提出了可能的形成机理。  相似文献   

6.
累托石/聚丙烯插层纳米复合材料的制备与性能   总被引:19,自引:0,他引:19  
采用熔融共混法制备了有机改性累托石 (OREC)粘土 均聚聚丙烯 (PP)纳米复合材料 ,以X 射线衍射分析 (XRD)及透射电子显微镜分析 (TEM)观察了复合材料的相貌结构 ,研究了复合材料的力学性能及热性能 .结果表明 ,OREC在添加份数较少时可与均聚聚丙烯熔融插层形成插层型聚丙烯纳米复合材料 ,该复合材料与纯PP相比 ,具有较高的拉伸强度、断裂伸长率及冲击强度 .在有机粘土添加 2 %时 ,复合材料的拉伸强度、断裂伸长率、冲击强度最高 ,与纯PP相比 ,2 %添加量的聚丙烯纳米复合材料拉伸强度提高 6 5 7% ,断裂伸长率提高 2 89 3% ,冲击强度提高 14 1% ,10 %失重率时对应的热分解温度提高 50K .  相似文献   

7.
通过化学法改性石墨烯,用全氟辛胺(FOA)的胺基与氧化石墨烯(GO)的羧基或烷氧基反应制备了含氟石墨烯复合材料(FOA-RGO),用傅里叶红外光谱、热失重分析、拉曼光谱、高分辨透射电子显微镜(HRTEM)以及原子力显微镜(AFM)对复合材料的结构与形貌进行了表征。 结果表明,FOA已经成功地修饰到石墨烯的边缘。与未修饰的石墨烯相比,水滴在FOA-RGO表面上的接触角从68°提高至118°,显示出良好的疏水性能。  相似文献   

8.
徐伟  王鹤  刘希峰 《合成化学》2022,30(12):965-971
以有机改性膨润土、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、 N,N-二甲基丙烯酰胺(DMAA)和季铵盐单体D-C16Br为原料,通过原位聚合制备了一种新型水溶性疏水缔合聚合物-膨润土纳米复合材料。利用红外光谱、X-射线衍射仪对产物结构进行表征,并通过与纯共聚物AMPS/DMAA/D-C16Br相比,研究了纳米黏土材料的引入对共聚物性能的影响。结果表明:在膨润土促进聚合物分子形成疏水缔合结构的作用下,具有复合插层结构的复合材料在热稳定性、耐温性、抗剪切性和黏弹性方面均优于纯聚合物,表明该纳米复合材料较纯共聚物具有良好的应用前景。  相似文献   

9.
聚甲基丙烯酸甲酯/层状硅酸盐复合材料的研究   总被引:1,自引:0,他引:1  
本文对聚甲基丙烯酸甲酯/层状硅酸盐纳米复合材料的国内外研究进展,层状硅酸盐的结构及有机化改性做了详细的综述.同时,对PMMA/层状硅酸盐粘土复合材料的结构及表征手段、制备原理及方法、物理和化学性能及应用前景做了系统的总结.最后,在我们研究工作的基础上对此领域的研究方向进行了预测.  相似文献   

10.
回顾了聚合物/粘土纳米复合材料中所用粘土的有机化方法与有机粘土的热稳定性,及其对复合材料性能的影响,指出在聚合物/粘土复合材料中粘土片层间距的变化同样有可能受到层间插层剂构象变化的影响、聚合物/粘土纳米材料的长期热氧稳定性与热失重结果可能不一致。  相似文献   

11.
Two kinds of polyvinyl chloride (PVC)/organophilic montmorillonite (OMT) nanocomposites are prepared by a melt intercalation method. This study has been designed to determine if the presence of iron and zinc ions in the structure of montmorillonite (MMT) lattice can affect thermal, flame retardant and smoke suppressant properties. The information about the morphological structure of PVC/OMT nanocomposites was obtained using X-ray diffraction and transmission electron microscopy. The thermal and flame retardant properties of the nanocomposites were characterized by thermogravimetric analysis, limiting oxygen index and smoke density. The nanocomposites based on Fe-OMT exhibit better thermal, flame retardant properties and lower degradation degree than those of pure PVC. The degradation mechanism was studied by pyrolysis, gas chromatography and mass spectrometry (Py-GC-MS).  相似文献   

12.
Chlorinated polyethylene (CPE)/organophilic-montmorillonite (Cloisite®30B (CL30B)) nanocomposites have been prepared by melt intercalation using (poly(ε-caprolactone), (PCL)) as CPE/clay compatibilizer. Actually, a high clay content masterbatch-based on PCL was first produced and then dispersed by melt blending within CPE. CPE/CL30B nanocomposites was also prepared by direct blending of CPE with CL30B for sake of comparison. All the composites were characterized by wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The thermal stability of the nanocomposites was analyzed by thermogravimetric analysis (TGA) while the mechanical properties were assessed by tensile testing. When using low molecular mass PCL chains as compatibilizer, the nanocomposites displayed a rather intercalated structure but their ultimate properties remained unchanged whereas with high molecular weight PCL chains, clay delamination was favoured and led to an increase of both thermal and mechanical properties of the resulting nanocomposites.  相似文献   

13.
The γ irradiation of polyisoprene and C60 solutions in decalin at 50, 100 and 150 kGy was employed to prepare polyisoprene/C60 nanocomposites. The nanocomposites were obtained as black gels. The excess of decalin was removed by treatment with methanol and acetone and the dried collapsed gels were studied by FT-IR spectroscopy and thermogravimetric analysis (TGA–DTG) and also by differential thermal analysis (DTA). The thermal stability was found to be enhanced by the presence of C60 fullerene and by the crosslinking density.For reference, also the radiolysis of C60 in decalin and the radiolysis of polyisoprene in decalin were studied. The data obtained were useful for the interpretation of the network structure of the polyisoprene/C60 nanocomposites and their thermal behaviour.  相似文献   

14.
In this report, we demonstrate that both the thermal stability and the thermal conductivity of bromobutyl rubber (BIIR) nanocomposites could be improved by incorporating the ionic liquids (ILs) modified graphene oxide (GO-ILs) using a solution compounding method. The structure, thermal stability and thermal conductivity of this newly modified BIIR nanocomposites were systematically analyzed and studied. The X-ray diffraction (XRD) analysis of GO-ILs showed that ILs had been effectively intercalated into the interlayer of GO, which was found to be able to raise the exfoliation degree of GO. The increased exfoliation degree facilitated a good dispersion of GO-ILs in the BIIR matrix, as revealed by the scanning electron microscope (SEM) images. The glass transition temperatures (Tg) of the GO-ILs/BIIR nanocomposites were also raised by the addition of GO-ILs, which indicates the strong interfacial adhesion between GO-ILs and the rubber. Most importantly, the incorporation of GO-ILs in the BIIR matrix could effectively improve the thermal stability of the rubber nanocomposites according to our thermogravimetric analysis (TGA). The activation energy (Ea) of thermal decomposition of GO-ILs/BIIR nanocomposites increases with the addition of GO-ILs. Besides, the thermal conductivity of GO-ILs/BIIR nanocomposite with 4 wt% of GO-ILs had 1.3-fold improvement compared to that of unfilled BIIR.  相似文献   

15.
将有机累托石与尼龙12粉末混合,采用激光烧结(SLS)技术制备了尼龙12累托石纳米复合材料,这是一种使纳米复合材料的制备与材料的成型同时进行的方法.利用X射线衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)等手段对复合材料的结构进行了表征,并对其力学性能及热性能进行了研究.结果表明,尼龙12分子在激光烧结过程中插入到累托石层间,形成的复合材料在拉伸强度、弯曲强度、冲击强度等力学性能及热稳定性能方面均优于尼龙12烧结试样.  相似文献   

16.
Poly(vinylidene chloride‐co‐vinylchloride)/organically modified fluorinated synthetic mica (MEE) (VDC‐VC/MEE) nanocomposites were prepared by melt blending of VDC‐VC copolymer with MEE, in the presence of dioctyl phthalate (DOP) which acted as a plasticizer and a cointercalating agent. The nanostructure, thermal, and dynamic mechanical properties of the VDC‐VC/MEE nanocomposites were studied by wide angle X‐ray diffractometer (WAXD), scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analyzer (TGA), and dynamic mechanical analyzer (DMA). It was found that partially intercalated and partially exfoliated structures coexisted in VDC‐VC/MEE nanocomposities. Below 8 wt % MEE content, the intercalation effect of nanocomposites decreased with increasing the MEE content. Under a nitrogen atmosphere, VDC‐VC/MEE nanocomposites exhibited a single step thermal degradation behavior. The nanostructure of VDC‐VC/MEE can effectively prevent volatile gases from being released, and thus enhances its thermal stability. The thermal stability of VDC‐VC/MEE nanocomposites is strongly related to the morphology of nanocomposites and the degraded composites structure. DMA revealed a significant improvement in the storage modulus within the testing temperature range. The increase in storage modulus depends on the MEE content, which is attributed to the dispersed phase morphology. The glass transition temperature of VDC‐VC/MEE nanocomposites is affected by the chain mobility in the nanocomposites rather than the aggregative morphology. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1214–1225, 2008  相似文献   

17.
The purpose of this work was to study the effect of dendrimer modified clay minerals on the structure and properties of ethylene-propylene-diene monomer (EPDM) nanocomposites.Flame-retardant and dendrimer modified organic montmorillonite (FR-DOMt) was successfully prepared by Na+-montmorillonite, tetrahydroxymethyl phosphonium chloride (THPC), N, N-dihydroxyl-3-aminomethyl propionate, and boric acid. This dendritic type of organoclay (OC) was used in preparation of EPDM/FR-DOMt nanocomposites. The properties of these nanocomposites were studied. The dispersion status of the layered silicates in EPDM was revealed by X-ray diffractometer (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRD and TEM results showed that FR-DOMt was exfoliated in the EPDM matrix when 10 phr of FR-DOMt was incorporated. The mechanical behavior, thermal stability, and flame retardance of the samples were examined. The experimental data demonstrated that the EPDM hybrids owned an improved tensile strength and elongation at break. In addition, the nanocomposites exhibited higher thermal stability and flame retardance than that of unfilled EPDM matrix.  相似文献   

18.
Polyimide/montmorillonite nanocomposites with photolithographic properties (PSPI/MMT) were prepared by in situ polymerization using an intrinsic photosensitive polyimide (PSPI) based on 4,4-diamino-3,3-dimethyldiphenylmethane (MMDA) and benzophenone-3,3,4,4-tetracarboxylic dianhydride (BTDA). XRD, TEM were used to obtain the information on morphological structure of PSPI/MMT nanocomposites. The exfoliated structure was obtained in the MMT content range studied. Satisfactory photolithographic patterns were obtained when the MMT content was below 2 wt.%. Universal tester, TGA, DSC were applied to characterize the mechanical and thermal properties of the nanocomposites. The introduction of MMT led to increase in tensile strength to the PSPI matrix while the elongation at break was not obviously effected. The introduction of MMT also resulted in improved thermal stability, marked decrease in coefficient of thermal expansion, decrease in solvent uptake, slight increase in glass transition temperature and increase in modulus.  相似文献   

19.
The effects of chemical treatments on red mud (RM) were investigated in terms of thermal stabilities of PMMA/RM and PVC/RM nanocomposites. N2/77 K adsorption behavior and contact angles were studied in the pore structures and surface energetics of RM, respectively. Thermal stabilities of the nanocomposites were investigated using a thermal mechanical analyzer (TMA) and thermogravimetric analysis (TGA). As a result, the acidically treated RM (ARM) had higher adsorption properties, including specific surface area, than untreated RM (VRM) or basically treated RM (BRM). A change in the structure of the ARM surface was due to hydrolysis or leaching a metal salt out of RM. Also, the electron acceptor (gamma(S)+, acid) of ARM and the electron donor (gamma(S)-, base) of BRM were increased in the development of acid and basic functional groups, respectively. PMMA/ARM nanocomposites had higher thermal stability and mechanical interfacial properties than PMMA/VRM or BRM nanocomposites. These results were due to the improvements of the dispersion properties and acid-base interfacial interactions of basic PMMA and ARM. In this work, although the dispersion properties of the BRM decreased, the thermal stabilities and mechanical interfacial properties of PVC/BRM nanocomposites increased, which could be attributed to improvement in the interfacial interactions between acidic PVC and BRM.  相似文献   

20.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organically modified clay (organoclay) toughened with maleated styrene-ethylene-butylene-styrene (SEBS-g-MA) were prepared by melt compounding using co-rotating twin-screw extruder followed by injection molding. X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize the structure of the nanocomposites. The mechanical properties of the nanocomposites were determined by tensile, flexural, and notched Izod impact tests. The single edge notch three point bending test was used to evaluate the fracture toughness of SEBS-g-MA toughened PA6/PP nanocomposites. Thermal properties were studied by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). XRD and TEM results indicated the formation of the exfoliated structure for the PA6/PP/organoclay nanocomposites with and without SEBS-g-MA. With the exception of stiffness and strength, the addition of SEBS-g-MA into the PA6/PP/organoclay nanocomposites increased ductility, impact strength and fracture toughness. The elongation at break and fracture toughness of PA6/PP blends and nanocomposites were increased with increasing the testing speed, whereas tensile strength was decreased. The increase in ductility and fracture toughness at high testing speed could be attributed to the thermal blunting mechanism in front of crack tip. DSC results revealed that the presence of SEBS-g-MA had negligible effect on the melting and crystallization behavior of the PA6/PP/organoclay nanocomposites. TGA results showed that the incorporation of SEBS-g-MA increased the thermal stability of the nanocomposite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号