首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A study is made of the motion of a liquid toward a well with a hemispherical end-face with unsteady-state spherical-radial filtration in a fractured-porous stratum consisting of hemispherical regions with different values of the permeability of the system of cracks, superposed one on another. A Laplace transform is used to find exact solutions to the problem of the lowering of the stratum pressure as a function of time and distance as well as of the output of a well working with a constant end-face pressure. The article discusses partial cases corresponding to the exploitation of closed and bounded open fractured-porous strata by a central well with a hemispherical end-face. On the basis of numerical calculations, the effect of the parameters of fractured-porous strata on the change in the indices of the process of their exploitation is established. It is established that, with the exploitation of fractured-porous strata, the process of the lowering of the end-face pressure of the well and its output become stabilized with sufficiently large values of the time.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 115–123, November–December, 1973.  相似文献   

2.
The finite-difference equations which have previously been developed to solve the problem of laminar boundary layer flow about a rotating sphere in an axial stream are analysed according to the available numerical stability theories. This analysis is necessary to determine the restrictions on velocities and mesh sizes required to obtain a convergent numerical solution. Convergence can be achieved if both consistency and stability of the finite-difference equations are fulfilled. The analysis reported in the present paper shows that the developed finite-difference equations are consistent with their original partial differential equations. Also, the analysis proves that the developed finite-difference procedure is numerically stable for all mesh sizes as long as the downstream meridional velocity is non-negative, i.e.as long as no flow reversals occur within the domain of solution.  相似文献   

3.
Steady free convection boundary layer about a truncated cone embedded in a porous medium saturated with pure or saline water at low temperatures has been studied in this paper. The governing coupled partial differential equations are solved numerically using a very efficient finite-difference method. Several new parameters arise and the results are given for some specific values of these parameters. The obtained results for a Boussinesq fluid are compared with known results from the open literature and it is shown that the agreement between these results is very good.  相似文献   

4.
The dynamic elastic buckling behavior of a geometrically imperfect complete spherical shell that is subjected to a uniform external step pressure is examined using Sander's equilibrium and kinematic equations, appropriately modified to include the influence of inertia forces and initial stress-free imperfections in the radius. A finite-difference procedure with either the Houbolt or Park methods of time integration is used to predict the axisym-metric dynamic elastic buckling pressures and associated critical mode numbers. The dynamic buckling pressure is significantly smaller than the corresponding static value for small initial imperfections, but is less imperfection  相似文献   

5.
High-order finite-difference schemes are less dispersive and dissipative but, at the same time, more isotropic than low-order schemes. They are well suited for solving computational acoustics problems. High-order finite-difference equations, however, support extraneous wave solutions which bear no resemblance to the exact solution of the original partial differential equations. These extraneous wave solutions, which invariably degrade the quality of the numerical solutions, are usually generated when solid-wall boundary conditions are imposed. A set of numerical boundary conditions simulating the presence of a solid wall for high-order finite-difference schemes using a minimum number of ghost values is proposed. The effectiveness of the numerical boundary conditions in producing quality solutions is analyzed and demonstrated by comparing the results of direct numerical simulations and exact solutions.This work was supported by the NASA Lewis Research Center Grant NAG 3-1267 and in part by the NASA Langley Research Center Grant NAG 1-1479 and the Florida State University through time granted on its Cray-YMP Supercomputer.  相似文献   

6.
In this paper we examine the general transient natural convection response arising due to a sudden change of the level of uniform flux dissipation rate from a vertical surface which is embedded in a porous medium. From an analytical investigation of the governing boundary-layer equations both a series solution which is valid at small values of the non-dimensional time and a solution which is valid at large times, when the transport of energy is steady, are derived. A numerical, transient formulation of the full unsteady boundary-layer equations is developed using an explicit finite-difference scheme. The numerical temperature profiles are observed to closely follow the small time solution initially and evolve along a curve which approaches the steady-state solution asymptotically. Results are presented to illustrate the occurrence of transients from both an increase and a decrease in the levels of existing energy inputs.  相似文献   

7.
An analysis is performed to study the heat transfer characteristics of natural convection over a vertical cone under the combined effects of a magnetic field and thermal radiation. The cone surface is subjected to a variable surface temperature. The fluid considered is a gray absorbing/emitting, but non-scattering medium. The boundary layer equations governing the flow are reduced to non-dimensional equations using non-dimensional quantities valid in the free-convection regime. The resulting non-dimensional governing equations are solved by an implicit finite-difference method of the Crank-Nicolson type, which is rapidly convergent and unconditionally stable. Numerical results are obtained for velocity, temperature, local and average skin friction, and local and average Nusselt numbers for various values of parameters occurring in the problem and are presented in the graphical form. Excellent agreement of the results obtained with available data is demonstrated.  相似文献   

8.
A new model for the Reynolds stress equations is presented. This model is used to obtain a theoretical solution for the problem of fully developed turbulent flow in a square duct. Nine governing equations for the axial velocity, lateral vorticity, lateral stream function and six components of the Reynolds stresses are simultaneously solved, by a finite-difference technique. To ensure numerical stability of the solution a special linearised implicit representation of the source terms is proposed, and simultaneous solution of the equations at each.mesh point is obtained. Near the wall a special procedure is used, by which the Reynolds stress equations are assumed to be in local equilibrium, and the velocity profile is assumed to be logarithmic. However, due to the secondary motion the logarithmic velocity profile is inclined to the axial direction. The results bear reasonable agreement with experimental data. Computer time requirements are moderate.  相似文献   

9.
Several different methods for solving Maxwell's equations in the time-domain through the use of irregular nonorthogonal grids are presented. Employing quadrilateral and/or triangular elements, these methods allow more accurate modeling of nonrectangular structures. The traditional “stair-stepping” boundary approximations associated with standard orthogonal-grid finite-difference methods are avoided. Numerical results comparing all of the methods are given. A modified finite-volume method, which is a direct generalization of the standard finite-difference method to arbitrary polygonal grids, is shown to be the most accurate.  相似文献   

10.
It is generally assumed in curved pipe flow analyses that the curvature ratio, δ, of the pipe is very small, in which case the flow depends on a single parameter, the Dean number. This is not the case if δ is not very small. To determine the importance of this effect we have numerically solved the full Navier-Stokes equations, in primitive variable form, for arbitrary values of δ. A factored ADI finite-difference scheme has been used, employing Chorin's artificial compressibility technique. The results show that the central-difference calculation on a staggered grid is stable, without adding artificial damping terms, due to coupling between pressure and velocity. A spatially variable time step is used with a fixed Courant number.  相似文献   

11.
Consideration is given to the solution of a dynamic problem for a solid of revolution with an arbitrary meridional section under impulsive thermomechanical loading inducing elastoplastic strains. The theory of small elastoplastic deformations is used. The constitutive equations are linearized by the variable-parameter method. The unloading process is described by a linear law. The solution technique involves the finite-element approximation in spatial coordinates and the finite-difference representation of time derivatives. Based on the principle of linear summation, recurrent relations are derived for successive evaluation of nodal displacements by an explicit scheme in time. Solution for cylinders and disks are presented to illustrate the influence of elastoplastic deformations on wave processes  相似文献   

12.
An analysis is performed to study unsteady free convective boundary layer flow of a nanofluid over a vertical cylinder. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing equations are formulated and a numerical solution is obtained by using an explicit finite-difference scheme of the Crank-Nicolson type. The solutions at each time step have been found to reach the steady state solution properly. Numerical results for the steady-state velocity, temperature and nanoparticles volume fraction profiles as well as the axial distributions and the time histories of the skin-friction coefficient, Nusselt number and the Sherwood number are presented graphically and discussed.  相似文献   

13.
The results are given of a finite-difference calculation which augment previously known data and enable one in conjunction with the results of [1, 2] to approximate the time-dependent values of the pressure on the surface of a cylinder for the case when the shock front is parallel to the cylinder axis. The obtained approximation is valid in the interval of time from the instant at which the wave touches the cylinder until the disturbance reaches the rear stagnation point of the cylinder. The obtained expressions can be used in engineering calculations to determine the nonstationary distribution of the pressure over the surface of the cylinder and the force which acts in the direction of motion of the wave. The intensity of the wave and the specific heat ratio can vary in fairly wide ranges.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 179–184, July–August, 1980.I thank L. E. Taraskina for assistance in the calculations and the evaluation of the results.  相似文献   

14.
Some properties of the time-dependent Navier-Stokes equations are discussed for flows impulsively started from rest by sudden application of a constant pressure gradient or by the impulsive motion of a boundary. Five illustrative examples are given. They are: unsteady flow in a circular cylinder moving parallel to its length, starting flow in a circular pipe, unsteady flow in a rotating cylinder, starting flow in a rectangular channel moving parallel to its length and unsteady flow in a channel of rectangular cross-section. It is found that the expressions of the quantities such as velocity, flux and skin friction are in series forms which may be rapidly convergent for large values of the time but slowly convergent for small values of the time or vice versa. It is shown that if their expressions can be found for one of large values of the time or small values of the time, these expressions can be used for the other.  相似文献   

15.
M. Z. Salleh  R. Nazar  I. Pop 《Meccanica》2012,47(5):1261-1269
In this paper, the problem of free convection boundary layer flow on a solid sphere in a micropolar fluid with Newtonian heating, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of partial differential equations are solved numerically using an implicit finite-difference scheme. Numerical solutions are obtained for the local wall temperature, the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for different values of the material or micropolar parameter K, the Prandtl number Pr and the conjugate parameter γ are analyzed and discussed.  相似文献   

16.
A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an optimization problem with several parameters determined by applying a generic algorithm. The optimized schemes are analyzed carefully from the aspects of the eigenvalue distribution, the ε-pseudospectra, the short time behavior, and the Fourier analysis. Numerical experiments for the Euler equations are used to show the effectiveness of the final recommended scheme.  相似文献   

17.
This paper considers the extended classical Blasius and Sakiadis equations, by considering a uniform free stream parallel to a fixed or moving flat plate, which has more practical significance. It is assumed that the plate is subjected to a constant heat flux, and moves in the same or opposite direction to the free stream. The resulting system of nonlinear ordinary differential equations is solved numerically using a finite-difference method. Numerical results are obtained for the skin friction coefficient and the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely the velocity ratio parameter and the Prandtl number. The results indicate that dual solutions exist when the plate and the free stream move in the opposite directions.  相似文献   

18.
In this paper, we proposed a model of generalized magneto-thermoelastic for orthotropic hollow cylinder whose surfaces are subjected to a thermal relaxation under the effect of rotation with one relaxation time. The system of fundamental equations is solved by using an implicit finite-difference scheme. A numerical method is used to calculate the temperature, displacement and the components of stresses with time and through the radial of the cylinder. Numerical results are given and illustrated graphically for each case considered. The results indicate that the effect of rotation, inhomogeneity and magnetic field are very pronounced. Comparison made with the results predicted by the theory of generalized magneto-thermoelasticity with one relaxation time in the absence of rotation.  相似文献   

19.
A numerical solution of the first-order homogeneous chemical reaction in an unsteady free convective flow past a semi-infinite vertical plate is studied. The dimensionless governing equations are solved by an efficient, more accurate, unconditionally stable, and rapidly converging implicit finite-difference scheme. The effect of various parameters, such as the Prandtl number, Schmidt number, buoyancy ratio parameter, and chemical reaction parameter on flow velocity and temperature is determined. The velocity profiles are in excellent agreement with available results in the literature. The local and average values of skin friction and Nusselt and Sherwood numbers are calculated. The effects of the chemical reaction parameters on these values are discussed for both generative and destructive reactions. Owing to the presence of the first-order chemical reaction, the velocity is found to increase in the generative reaction and to decrease in the destructive reaction.  相似文献   

20.
An approximate analytical solution is provided for one-dimensional, counter- current, spontaneous imbibition of a wetting phase (water) into a semi-infinite porous medium. The solution is based on the assumption that a similarity solution exists for the displacement process. This assumption, in turn, rests on the assumption that the set of relative permeability and capillary pressures curves are unique functions of saturation and do not depend on the nature of the displacement. It further rests on the assumption that the saturation at the imbibition face does not vary with time. It is demonstrated that the solution is in agreement with results obtained from experiments and also numerical analyses of these experiments. The experiments utilize cylindrical samples with the radial surface and one end-face sealed, and with counter-current imbibition occurring at the open end-face. The stage of the experiment that is modeled by the present solution is the period before the imbibition front contacts the sealed end-face. An important finding of the present analysis is that the pressure upstream of the advancing invasion front is a constant. A second, improved solution is also presented; this solution is an iterative, series solution of an integral-differential equation. It converges to a stable solution in very few terms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号