首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New chiral and non-chiral rhodium(I)–NHC complexes were synthesized. The first attempt by deprotonation of an imidazolinium salt with KOtBu and reaction with [Rh(COD)Cl]2 leads to the corresponding rhodium(I) complex. Due to the basic conditions during the reaction a loss of chirality occurs. An alternative transmetallation reaction with a silver(I)–NHC complex yields the desired rhodium(I)–NHC complex under retention of chirality. Both Rh complexes were fully characterized by analytical methods.  相似文献   

2.
Reaction of Mo2(pyphos)4 (1) with [RhCl(CO)2]2 followed by treatment of excess amounts of tBuNC resulted in the clean formation of [Mo2Rh2(tBuNC)4(pyphos)4](X)2 (4a; X = Cl). The X-ray diffraction study as well as spectroscopic analyses of 4c (X = BPh4) implied that there is no direct sigma-bonding interaction between each Rh(I) atom and the Mo2 core. Each Rh(I) atom in 4 can be oxidized concurrently by 2 equiv of [Cp2Fe]PF6 to afford [Mo2Rh2(Cl)2(tBuNC)4(pyphos)4](PF6)2 (5) along with the formation of two Mo-Rh(II) single bonds and the reduction of the bond orders of the Mo-Mo moiety.  相似文献   

3.
Reaction of Mo2(pyphos)4 (1) with [MCl(CO)2]2 (M = Ir and Rh) afforded linear tetranuclear complexes of a formula Mo2M2(CO)2(Cl)2(pyphos)4 (2, M = Ir; 3, M = Rh). X-ray diffraction studies confirmed that two "MCl(CO)" fragments are introduced into both axial sites of the Mo2 core in 1 and coordinated by two PPh2 groups in a trans fashion, thereby forming a square-planar geometry around each M(I) metal. Treatment of 2 and 3 with an excess amount of tBuNC and XylNC induced dissociation of the carbonyl and chloride ligands to yield the corresponding dicationic complexes [Mo2M2(pyphos)4(tBuNC)4](Cl)2 (5a, M = Ir; 6a, M = Rh) and [Mo2M2(pyphos)4(XylNC)4](Cl)2 (7, M = Ir; 8, M = Rh). Their molecular structures were characterized by spectroscopic data as well as X-ray diffraction studies of BPh4 derivatives [Mo2M2(pyphos)4(tBuNC)4](BPh4)2 (5b, M = Ir; 6c, M = Rh), which confirmed that there is no direct sigma-bonding interaction between the M(I) atom and the Mo2 core. The M(I) atom in 5 and 6 can be oxidized by either 2 equiv of [Cp2Fe][PF6] or an equimolar amount of I2 to afford Mo(II)2M(II)2 complexes, [Mo2M2(X)2(tBuNC)4(pyphos)4]2+ in which two Mo-M(II) single bonds are formed and the bond order of the Mo-Mo moiety has been decreased to three. The Ir(I) complex 5a reacted not only with methyl iodide but also with dichloromethane to afford the 1,4-oxidative addition products [Mo2Ir2(CH3)(I)(tBuNC)4(pyphos)4](Cl)2 (13) and [Mo2Ir2(CH2Cl)(Cl)(tBuNC)4(pyphos)4](Cl)2 (15), respectively, although the corresponding reactions using the Rh(I) analogue 6 did not proceed. Kinetic analysis of the reaction with CH3I suggested that the 1,4-oxidative addition to the Ir(I) complex occurs in an SN2 reaction mechanism.  相似文献   

4.
A new series of chiral NHC–rhodium complexes has been prepared from the reactions between [Rh(COD)Cl]2, NaOAc, KI and dibenzimidazolium salt 4a or monobenzimidazolium salts 4bd, which are derived from chiral 2,2′-diamino-6,6′-dimethyl-1,1′-biphenyl, 2,2′-diamino-1,1′-binaphthyl or 6,6′-dimethyl-2-amino-2′-hydroxy-1,1′-biphenyl. The steric and electronic effects of the ligand play an important role in the complex formation. For example, treatment of chiral monobenzimidazolium salt 4b (with a NMe2 group) with 0.5 equiv of [Rh(COD)Cl]2 in the presence of NaOAc and KI in CH3CN at reflux gives a chiral Rh(I) complex 5b, while chiral monobenzimidazolium salt 4d (with a MeO group) affords a racemic Rh(I) complex 5d. Under similar reaction conditions, treatment of dibenzimidazolium salt 4a with 0.5 equiv of [Rh(COD)Cl]2 in the presence of NaOAc and KI gives a racemic Rh(III) complex 5a, while the dibenzimidazolium salt [C20H12(C7H5N2Me)2]I2 derived from chiral 2,2′-diamino-1,1′-binaphthyl affords a chiral Rh(III) complex [C20H12(C7H4N2Me)2]RhI2(OAc). All compounds have been characterized by various spectroscopic techniques, and elemental analyses. The solid-state structures of the rhodium complexes have been further confirmed by X-ray diffraction analyses.  相似文献   

5.
《Mendeleev Communications》2021,31(5):620-623
The chemical oxidation of rhodium(i) complexes [Rh(L)(COD)][BF4], where L is a ferrocenyl phosphine/N-heterocyclic carbene ligand, with 2 equiv. of a triaryl-aminium salt [(4-BrC6H4)3N][BF4] in acetonitrile gave planar chiral, air-stable [Rh(L–H)(MeCN)3][BF4]2 complexes where the ferrocene (C5H4CH2ImR or C5H4CH2BImCH2Mes) ring has been C–H activated at the position 2 in good to excellent yields. An important reactivity difference between our complexes and the ubiquitous [Cp*Rh(MeCN)3]X2 complex has been observed in the Grignard-type arylation of 4-nitrobenzaldehyde.  相似文献   

6.
Russian Journal of Physical Chemistry A - We investigate the Schrock–Osborn catalyst, [Rh(COD)(PPh3)2][PF6], in a series of ionic liquids by XPS. The electronic environment of the rhodium...  相似文献   

7.
Seven chiral thiazolidines bound rhodium complexes were synthesized and their catalytic asymmetric hydrosilation properties were investigated It was found through investigation that the configuration of newly formed chiral centre C2 of substituted chiral thiazolidines prepared from L-cysteine or its esters has no effect on the final results of catalytic asymmetric hydrosilation.The direct reason for causing this phenomenon is reported by the present quantitative results for the first time:the rapid racemation of chiral center C2 of chiral thiazolidine ligands takes place under the catalysis of rhodium(Ⅰ) complex [Rh(COD)CI]2  相似文献   

8.
N‐Heterocyclic carbene‐phosphinidene adducts of the type (IDipp)PR [R = Ph ( 5 ), SiMe3 ( 6 ); IDipp = 1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene] were used as ligands for the preparation of rhodium(I) and iridium(I) complexes. Treatment of (IDipp)PPh ( 5 ) with the dimeric complexes [M(μ‐Cl)(COD)]2 (M = Rh, Ir; COD = 1,5‐cyclcooctadiene) afforded the corresponding metal(I) complexes [M(COD)Cl{(IDipp)PPh}] [M = Rh ( 7 ) or Ir ( 8 )] in moderate to good yields. The reaction of (IDipp)PSiMe3 ( 6 ) with [Ir(μ‐Cl)(COD)]2 did not yield trimethylsilyl chloride elimination product, but furnished the 1:1 complex, [Ir(COD)Cl{(IDipp)PSiMe3}] ( 9 ). Additionally, the rhodium‐COD complex 7 was converted into the corresponding rhodium‐carbonyl complex [Rh(CO)2Cl{(IDipp)PPh}] ( 10 ) by reaction with an excess of carbon monoxide gas. All complexes were fully characterized by NMR spectroscopy, microanalyses, and single‐crystal X‐ray diffraction studies.  相似文献   

9.
The synthesis of new ligand systems based on the bipyridine unit for bi- and trimetallic complexes, including a rare example of a chiral bimetallic complex, is presented. Ligands BBPX (bis-bipyridine-xylene, 3) and TBPBX (tris-bipyridine-bis-xylene, 4) were prepared in one step by reacting alpha,alpha'-dibromo-o-xylene (2) with 2 equiv of the monolithiated derivative of 4,4'-dimethyl-2,2'-bipyridine. Dilithium (S)-binaphtholate (5) reacted with 2 equiv of 4-bromomethyl-4'-methyl-2,2'-bipyridine (6), affording ligand (S)-BBPBINAP (bis-bipyridine-binaphtholate, 7). These ligands reacted cleanly with 1, 1.5, and 1 equiv of the rhodium dimer [Rh(2)Cl(2)(HD)(2)] (HD = 1,5-hexadiene), respectively. Chloride abstraction led to the isolation of the cationic complexes BBPX[Rh(HD)BF(4)](2) (8), TBPBX[Rh(HD)BF(4)](3) (10), and (S)-BBPBINAP[Rh(HD)BF(4)](2) (12). When BBPX (3), TBPBX (4), and (S)-BBPBINAP (7) were added to 2, 3, and 2 equiv of [Rh(NBD)(2)]BF(4) or [Rh(NBD)(CH(3)CN)(2)]BF(4) (NBD = norbornadiene), respectively, clean formation of BBPX[Rh(NBD)BF(4)](2) (9), TBPBX[Rh(NBD)BF(4)](3) (11), and (S)-BBPBINAP[Rh(NBD)BF(4)](2) (13) was observed. The neutral iridium complex (S)-BBPBINAP[IrCl(COD)](2) (14) was obtained by reaction of (S)-BBPBINAP (7) with 1 equiv of [Ir(2)Cl(2)(COD)(2)] (COD = cyclooctadiene). The complexes were fully characterized including X-ray structural studies of 8, 9, and 13, and preliminary studies on their catalytic activity were performed.  相似文献   

10.
The chloro-bridged rhodium and iridium complexes [M2(BTSE)2Cl2] (M = Rh 1, Ir 2) bearing the chelating bis-sulfoxide tBuSOC2H4SOtBu (BTSE) were prepared by the reaction of [M2(COE)4Cl2] (M = Rh, Ir; COE = cyclooctene) with an excess of a racemic mixture of the ligand. The cationic compounds [M(BTSE)2][PF6] (M = Rh 3, Ir 4), bearing one S- and one O-bonded sulfoxide, were also obtained in good yields. The chloro-bridges in 2 can be cleaved with 2-methyl-6-pyridinemethanol and 2-aminomethyl pyridine, resulting in the iridium(I) complexes [Ir(BTSE)(Py)(Cl)] (Py = 2-methyl-6-pyridinemethanol 5, 2-aminomethyl-pyridine 6). In case of the bulky 2-hydroxy- isopropyl-pyridine, selective OH oxidative addition took place, forming the Ir(III)-hydride [Ir(BTSE)(2-isopropoxy-pyridine)(H)(Cl)] 7, with no competition from the six properly oriented C-H bonds. The cationic rhodium(I) and iridium(I) compounds [M(BTSE)(2-aminomethyl-pyridine)][X] (M = Rh 8, Ir 10), [Rh(BTSE)(2-hydroxy- isopropyl-pyridine)][X] 9(stabilized by intramolecular hydrogen bonding), [Ir(BTSE)(pyridine)2][PF6] 12, [Ir(BTSE)(alpha-picoline)2][PF6] 13, and [Rh(BTSE)(1,10-phenanthroline)][PF6] 14 were prepared either by chloride abstraction from the dimeric precursors or by replacement of the labile oxygen bonded sulfoxide in 3 or 4. Complex 14 exhibits a dimeric structure in the solid state by pi-pi stacking of the phenanthroline ligands.  相似文献   

11.
A study has been made of the asymmetric hydrosilylation of acetophenone by diphenylsilane under the influence of rhodium complexes with chiral phosphites. The enantioselective nature of the reaction depends on the phosphite structure, the acetophenone/rhodium and ligana/rhodium ratios, and the temperature. The maximum optical yield (24%) is attainod on the complex [Rh(COD)Cl]2/(S, S)-2-ethoxy-4,5-dicarbisopropoxy-1,3-2-dioxophiospholane.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 983–989, May, 1991.  相似文献   

12.
Highly enantioselective 1,4-addition of alkenylzirconocene chlorides to α,β-enones was found to be catalyzed by a chiral rhodium complex generated from [Rh(cod)(MeCN)2]BF4 and (S)-BINAP. The reaction can be applied to either cyclic or acyclic enones and the optical yield was up to 99% ee. The reaction mechanism would involve the transmetalation between the alkenylzirconocene chloride and the rhodium complex to give the alkenylrhodium species as a key intermediate.  相似文献   

13.
The reaction between [Rh(mu-OH)(COD)](2) (COD = 1,5-cyclooctadiene) and 73% HF in THF gives [Rh(3)(mu(3)-OH)(2)(COD)(3)](HF(2)) (1). Its crystal structure, determined by ab initio X-ray powder diffraction methods (from conventional laboratory data), contains complex trimetallic cations linked together in 1D chains by a mu(3)-OH...F-H-F...HO-mu(3) sequence of strong hydrogen bonds. The complex [Rh(mu-F)(COE)(2)](2) (COE = cyclooctene; 2), prepared by reacting [Rh(mu-OH)(COE)(2)](2) with NEt(3).3HF (3:2), has been characterized. Complex 1 reacts with PR(3) (1:3) to give [RhF(COD)(PR(3))] [R = Ph (3), C(6)H(4)OMe-4 (4), (i)Pr (5), Cy (6)] that can be prepared directly by reacting [Rh(mu-OH)(COD)](2) with 73% HF and PR(3) (1:2:2). The reactions of 1 with PPh(3) or Et(3)P have been studied by NMR spectroscopy at different molar ratios. Complexes [RhF(PEt(3))(3)] (7), [RhF(COD)(PEt(3))] (8), and [RhF(PPh(3))(3)] (9) have been detected. The complex [Rh(F)(NBD)(iPr(3)P)] (NBD = norbornadiene; 10) was prepared by the sequential treatment of [Rh(mu-OMe)(NBD)](2) with 1 equiv of NEt(3).3HF and (i)Pr(3)P. The first isolated bifluoride rhodium(I) complexes [Rh(FHF)(COD)(PR(3))] [R = Ph (11), (i)Pr (12), Cy (13)], obtained by reacting fluoro complexes 3, 5, and 6 with NEt(3).3HF (3:1), have been characterized. The crystal structures of 3 and 11 have been determined.  相似文献   

14.
The first representative of chiral P-monodentate phosphite ligands containing quaternary ammonium substituents and its rhodium complex [Rh(COD)(L)2]BF4 (COD is 1,5-cycloctadiene) were obtained. The use of this ligand in Rh-catalyzed asymmetric hydrogenation of prochiral methyl esters of unsaturated acids allowed one to achieve optical yields up to 99%. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1395–1398, August, 2006.  相似文献   

15.
The mechanism of the asymmetric hydrogenation of methyl (Z)-2-acetamidocinnamate (mac) catalysed by [Rh(MonoPhos)(2)(nbd)]SbF(6) (MonoPhos: 3,5-dioxa-4-phosphacyclohepta[2,1-a:3,4-a']dinaphthalen-4-yl)dimethylamine) was elucidated by using (1)H, (31)P and (103)Rh NMR spectroscopy and ESI-MS. The use of nbd allows one to obtain in pure form the rhodium complex that contains two units of the ligand. In contrast to the analogous complexes that contain cis,cis-1,5-cyclooctadiene (cod), this complex shows well-resolved NMR spectroscopic signals. Hydrogenation of these catalyst precursors at 1 bar total pressure gave rise to the formation of a bimetallic complex of general formula [Rh(MonoPhos)(2)](2)(SbF(6))(2); no solvate complexes were detected. In the dimeric complex both rhodium atoms are ligated to two MonoPhos ligands but, in addition, each rhodium atom also binds to one of the binaphthyl rings of a ligand that is bound to the other rhodium metal. Upon addition of mac, a mixture of diastereomeric complexes [Rh(MonoPhos)(2)(mac)]SbF(6) is formed in which the substrate is bound in a chelate fashion to the metal. Upon hydrogenation, these adducts are converted into a new complex [Rh(MonoPhos)(2){mac(H)(2)}]SbF(6) in which the methyl phenylalaninate mac(H)(2) is bound through its aromatic ring to rhodium. Addition of mac to this complex leads to displacement of the product by the substrate. No hydride intermediates could be detected and no evidence was found for the involvement at any stage of the process of complexes with only one coordinated MonoPhos. The collected data suggest that the asymmetric hydrogenation follows a Halpern-like mechanism in which the less abundant substrate-catalyst adduct is preferentially hydrogenated to phenylalanine methyl ester.  相似文献   

16.
Cationic rhodium(I) complexes cis-[Rh(acetone)2(L)(L')]+ (2: L = L'=C8H14; 3: L=C8H14; L'=PiPr3; 4: L=L'=PiPr3), prepared from [RhCl(C8H14)2]2] and isolated as PF6 salts, catalyze the C-C coupling reaction of diphenyldiazomethane with ethene, propene, and styrene. In most cases, a mixture of isomeric olefins and cyclopropanes were obtained which are formally built up by one equivalent of RCH=CH2 (R = H, Me, Ph) and one equivalent of CPh2. The efficiency and selectivity of the catalyst depends significantly on the coordination sphere around the rhodium(I) center. Treatment of 4 with Ph2CN2 in the molar ratio of 1:1 and 1:2 gave the complexes trans-[Rh(PiPr3)2(acetone)(eta1-N2CPh2)]PF6 (8) and trans-[Rh(PiPr3)2(eta1-N2CPh2)2]PF6 (9), of which 8 was characterized by X-ray crystallography. Since 8 and 9 not only react with ethene but also catalyze the reaction of C2H4 and free Ph2CN2, they can be regarded as intermediates (possibly resting states) in the C-C coupling process. The lability of 8 and 9 is illustrated by the reactions with pyridine and NaX (X=Cl, Br, I, N3) which afford the mono(diphenyldiazomethane)rhodium(I) compounds trans-[Rh(PiPr3)2(py)(eta1-N2CPh2)]PF6 (10) and trans-[RhX(eta1-N2CPh2)(PiPr3)2] (11-14), respectively. The catalytic activity of the neutral complexes 11 - 14 is somewhat less than that of the cationic species 8, 9 and decreases in the order Cl > Br> I > N3.  相似文献   

17.
Highly enantioselective 1,4-addition of organosiloxanes to alpha,beta-unsaturated carbonyl compounds was found to be catalyzed by a chiral rhodium complex generated from [Rh(cod)(MeCN)(2)]BF(4) and (S)-BINAP. Both (E)- and (Z)-1-alkenyl groups as well as aryl groups can be introduced enantioselectively into the beta-position of a variety of ketones, esters, and amides. [reaction--see text]  相似文献   

18.
Novel neutral and cationic Rh(I) and Ir(I) complexes that contain only DMSO molecules as dative ligands with S-, O-, and bridging S,O-binding modes were isolated and characterized. The neutral derivatives [RhCl(DMSO)(3)] (1) and [IrCl(DMSO)(3)] (2) were synthesized from the dimeric precursors [M(2)Cl(2)(coe)(4)] (M=Rh, Ir; COE=cyclooctene). The dimeric Ir(I) compound [Ir(2)Cl(2)(DMSO)(4)] (3) was obtained from 2. The first example of a square-planar complex with a bidentate S,O-bridging DMSO ligand, [(coe)(DMSO)Rh(micro-Cl)(micro-DMSO)RhCl(DMSO)] (4), was obtained by treating [Rh(2)Cl(2)(coe)(4)] with three equivalents of DMSO. The mixed DMSO-olefin complex [IrCl(cod)(DMSO)] (5, COD=cyclooctadiene) was generated from [Ir(2)Cl(2)(cod)(2)]. Substitution reactions of these neutral systems afforded the complexes [RhCl(py)(DMSO)(2)] (6), [IrCl(py)(DMSO)(2)] (7), [IrCl(iPr(3)P)(DMSO)(2)] (8), [RhCl(dmbpy)(DMSO)] (9, dmbpy=4,4'-dimethyl-2,2'-bipyridine), and [IrCl(dmbpy)(DMSO)] (10). The cationic O-bound complex [Rh(cod)(DMSO)(2)]BF(4) (11) was synthesized from [Rh(cod)(2)]BF(4). Treatment of the cationic complexes [M(coe)(2)(O=CMe(2))(2)]PF(6) (M=Rh, Ir) with DMSO gave the mixed S- and O-bound DMSO complexes [M(DMSO)(2)(DMSO)(2)]PF(6) (Rh=12; Ir=in situ characterization). Substitution of the O-bound DMSO ligands with dmbpy or pyridine resulted in the isolation of [Rh(dmbpy)(DMSO)(2)]PF(6) (13) and [Ir(py)(2)(DMSO)(2)]PF(6) (14). Oxidative addition of hydrogen to [IrCl(DMSO)(3)] (2) gave the kinetic product fac-[Ir(H)(2)Cl(DMSO)(3)] (15) which was then easily converted to the more thermodynamically stable product mer-[Ir(H)(2)Cl(DMSO)(3)] (16). Oxidative addition of water to both neutral and cationic Ir(I) DMSO complexes gave the corresponding hydrido-hydroxo addition products syn-[(DMSO)(2)HIr(micro-OH)(2)(micro-Cl)IrH(DMSO)(2)][IrCl(2)(DMSO)(2)] (17) and anti-[(DMSO)(2)(DMSO)HIr(micro-OH)(2)IrH(DMSO)(2)(DMSO)][PF(6)](2) (18). The cationic [Ir(DMSO)(2)(DMSO)(2)]PF(6) complex (formed in situ from [Ir(coe)(2)(O=CMe(2))(2)]PF(6)) also reacts with methanol to give the hydrido-alkoxo complex syn-[(DMSO)(2)HIr(micro-OCH(3))(3)IrH(DMSO)(2)]PF(6) (19). Complexes 1, 2, 4, 5, 11, 12, 14, 17, 18, and 19 were characterized by crystallography.  相似文献   

19.
Luminescent cyclometalated rhodium(III) and iridium(III) complexes of the general formula [M(ppy) 2(N (wedge)N)][PF 6], with N (wedge)N = Hcmbpy = 4-carboxy-4'-methyl-2,2'-bipyridine and M = Rh ( 1), Ir ( 2) and N (wedge)N = H 2dcbpy = 4,4'-dicarboxy-2,2'-bipyridine and M = Rh ( 3), Ir ( 4), were prepared in high yields and fully characterized. The X-ray molecular structure of the monocarboxylic iridium complex [Ir(ppy) 2(Hcmbpy)][PF 6] ( 2) was also determined. The photophysical properties of these compounds were studied and showed that the photoluminescence of rhodium complexes 1 and 3 and iridium complexes 2 and 4 originates from intraligand charge-transfer (ILCT) and metal-to-ligand charge-transfer/ligand-centered MLCT/LC excited states, respectively. For comparison purposes, the mono- and dicarboxylic acid ruthenium complexes [Ru(DIP) 2(Hcmbpy)][Cl] 2 ( 5) and [Ru(DIP) 2(H 2dcbpy)][Cl] 2 ( 6), where DIP = 4,7-diphenyl-1,10-phenanthroline, were also prepared, whose emission is MLCT in nature. Comparison of the photophysical behavior of these rhodium(III), iridium(III), and ruthenium(II) complexes reveals the influence of the carboxylic groups that affect in different ways the ILCT, MLCT, and LC states.  相似文献   

20.
The title compounds are accessed by sequences starting with racemic and enantiomerically pure [(eta5-C5H5)Re(NO)(PPh3)(CH3)]. Reactions with chlorobenzene/HBF4, PPh2H, and tBuOK give the phosphido complex [(eta5-C5H5)Re(NO)(PPh3)(PPh2)] (3). Reactions with Ph3C+ BF4-, PPh2H, and tBuOK give the methylene homologue [(eta5-C5H5)Re(NO)(PPh3)(CH2PPh2)] (9). Treatment of 3 or 9 with nBuLi or tBuLi and then PPh3Cl gives the diphosphido systems [(eta5-C5H4PPh2)Re(NO)(PPh3)((CH2)nPPh2)] (n = 0/1, 5/11). Reactions of 5 and 11 with [Rh(NBD)Cl]2/AgPF6 (NBD = norbornadiene) give the rhenium/rhodium chelate complexes [(eta5-C5H4PPh2)Re(NO)(PPh3)((mu-CH2)nPPh2)Rh(NBD)]+ PF6- (n = 0/1, 6+/12+ PF6-; 30-32% overall from commercial Re2(CO)10). The crystal structures of 6+ PF6- and 12+ PF6- are compared to those of 3 and 9, and other rhodium complexes of chelating bis(diphenylphosphines). The chiral pockets defined by the PPh2 groups show unusual features. Four alkenes of the type (Z)-RCH=C(NHCOCH3)CO2R' are treated with H2 (1 atm) and (R)-6+ PF6- or (S)-12+ PF6- (0.5 mol%) in THF at room temperature. Protected amino acids are obtained in 70-98% yields and 93-82% ee [(R)-6- PF6-] or 72-60% ee [(S)-12+ PF6-]. Pressure and temperature effects are defined, and turnover numbers of > 1600 are realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号