首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
韩艳春 《高分子科学》2013,31(5):748-759
The preparation of large area coverage of films with uniaxially aligned poly(3-hexylthiophene)(P3HT) nanofibers by using zone-casting approach is reported.The length and the orientation of the nanofibers are defined by the solubility of the solvent,the P3HT molecular weight and the substrate temperature.The length of the oriented nanofibers could be increased from 1 μm to more than 10 μm by adding poor solvent into the P3HT solution.It is found that for P3HT of relatively low molecular weight,a solvent with relatively low solubility has to be chosen to get the oriented film.While for the high molecular weight P3HT,the solvent with a relatively high solubility has to be used.The well-aligned film could be obtained because of the solute concentration gradient in the region where the critical concentration is reached during the zone-casting process.Particularly,the solvent evaporation rate and crystallization rate must be chosen properly to satisfy the stationary conditions above,which were controlled by an appropriate choice of solvent and substrate temperature.The film prepared by zone-casting approach had microcrystalline P3HT domains with more inter-chain order than spin-coating film.Meanwhile,the P3HT π-π stacking direction was parallel to the alignment direction of the nanofibers.  相似文献   

2.
This review focuses on the structural control in thin films of regioregular poly(3‐hexylthiophene) (P3HT), a workhorse among conjugated semiconducting polymers. It highlights the correlation existing between processing conditions and the resulting structures formed in thin films and in solution. Particular emphasis is put on the control of nucleation, crystallinity and orientation. P3HT can generate a large palette of morphologies in thin films including crystalline nanofibrils, spherulites, interconnected semicrystalline morphologies and nanostructured fibers, depending on the elaboration method and on the macromolecular parameters of the polymer. Effective means developed in the recent literature to control orientation of crystalline domains in thin films, especially by using epitaxial crystallization and controlled nucleation conditions are emphasized. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1218–1233, 2011  相似文献   

3.
采用良溶剂与不良溶剂混合的方法,提高了聚3-己基噻吩(P3HT)薄膜晶体管的场效应迁移率.UV-Vis吸收光谱、掠角X-射线衍射和原子力显微镜研究表明,通过向P3HT的氯仿溶液中加入适量二氧六环可以增强溶液分子间π-π相互作用,在溶液中形成分子链有序排列的P3HT聚集体,从而提高了旋涂得到的聚合物薄膜结晶度,并控制分子沿着有利于电荷传输方向排列.薄膜的场效应迁移率在二氧六环的含量为10vol%时达到最高值1.7×10-2 cm2 V-1 s-1,与纯氯仿溶液制得的P3HT薄膜的迁移率相比提高了50多倍.  相似文献   

4.
In this article, the uniaxial alignment of poly(3-hexylthiophene) (P3HT) nanofibrils with a π-π stacking growth direction in which P3HT chains adopt a flat-on conformation was obtained by solvent directional evaporation using a glass cover slide and a poly(dimethylsiloxane) (PDMS) sheet to press the P3HT film in a carbon disulfide (CS(2)) atmosphere. By controlling the CS(2) vapor pressure during the film-forming process, we got a well-oriented P3HT film whose order parameter reached as high as 0.97. The orientation of the film was induced by the crystallization nucleation of P3HT and the directional evaporation of the solvent. Under a CS(2) vapor atmosphere, P3HT crystals preferred to adopt the form II modification, which started by nucleation. Owing to the solvent directional evaporation from the center to the margin, P3HT at the center of the sample would precipitate first to induce nucleation. Then the peripheral P3HT would directly diffuse, precipitate, and then adhere to the nucleus to form the uniaxial alignment of P3HT nanofibrils along the direction of solvent evaporation. Furthermore, in the P3HT nanofibrils, the π-π stacking direction of P3HT lamellae was parallel to the crystal growth direction, which would provide an effective path for charge transport.  相似文献   

5.
Hierarchical poly(3‐hexylthiophene)(P3HT)/carbon nanotube (CNT) supramolecular structures were fabricated through a bottom‐up CNT induced P3HT crystallization strategy. P3HT nanowires growing perpendicular from CNT surface have uniform width and height. The density and the length of these nanowires can be controlled by tuning the P3HT/CNT mass ratio. The quasi‐isothermal crystallization process monitored by in situ UV–Vis spectroscopy indicates that CNTs can greatly enhance the P3HT crystallization, and the P3HT nanowire formation follows first‐order kinetics. Such bottom‐up strategy provides a general approach to build 2D functional conductive supramolecular structures that will lead to numerous applications in nanoscale electronics.

  相似文献   


6.
A series of all‐conjugated diblock and triblock copolymers comprised of poly(naphthalene diimide) (PNDI)‐based n‐type and the poly(3‐hexylthiophene) (P3HT) segments could be synthesized via the Kumada catalyst‐transfer polycondensation process. The crystalline structures and chain orientation of the block copolymer thin films were systematically studied by grazing incident wide‐angle X‐ray scattering (GIWAXS). The GIWAXS results indicated that both the P3HT and PNDI segments in the block copolymers form exclusive crystalline domains in which the P3HT domain aligns with an edge‐on rich orientation, and the PNDI domain aligns with a face‐on rich orientation. In contrast, the blend films of the P3HT and PNDI homopolymers also show two distinguished crystalline domains in which the P3HT domain aligns with an edge‐on rich orientation, and the PNDI domains align in different ways depending on the chemical structure of n‐type polymers, that is, PNDI1Th is isotropically dispersed, while PNDI2Th aligns with a face‐on rich orientation. In addition, the effect of thermal annealing on the crystalline behavior of the block copolymers is reported. The GIWAXS results indicated that thermal annealing increases the crystallinity of both segments without affecting their chain orientation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1139–1148  相似文献   

7.
韩艳春 《高分子科学》2013,31(4):610-619
The preparation of the poly(3-hexylthiophene) (P3HT) stripe structure with oriented nanofibrils prepared by controlled inclining evaporative technique is reported. The distance of the adjacent stripes could be controlled from 40 μm to 100 μm by decreasing the inclining angle. The oriented nanofibrils in the stripes can be obtained because the P3HT lamellae diffuse directionally and form 1D crystals at the three-phase contact line of the drop. In order to get the oriented P3HT stripes, the proper solvent evaporation rate which is controlled by the inclining angle and the wettability of the substrate must be carefully chosen to match the P3HT 1D crystallization rate. It is found that large inclining angle and the hydrophilic substrate (for example: glass and PEDOT) are beneficial to get P3HT stripe structure with oriented nanofibrils.  相似文献   

8.
Solid-state structures of regioregulated poly(3-hexylthiophene) (P3HT) and poly(3-butylthiophene) (P3BT) were investigated using Fourier transform infrared absorption (FT-IR) spectroscopy. This study revealed that a twist glass transition of thiophene twisting for P3HT exists around 300 K ( T gp). Additionally, the influence of annealing on population of glassy crystal, crystal, and plastic crystal phases was explored. The annealed sample is dominated by plastic crystal phase, and this phase increases with annealing temperature below T gp. The frustration against crystallization in P3HT is weaker than that in P3BT. Consequently, the plastic crystal phase is formed as a dominant structure, whereas P3BT forms both a well-defined crystal in the conventional sense and glassy crystal.  相似文献   

9.
In this article, we present the research on the influence of the composition of thin films of a blend of poly (3-hexylthiophene −2,5-diyl) - P3HT with fullerene derivatives [6,6]-phenyl-C71-butyric acid methyl ester – PC70BM and [6,6]-phenyl-C61-butyric acid methyl ester – PC60BM on their thermal transitions. The influence of molar mass (Mw) of P3HT (Mw = 65.2; 54.2 and 34.1 kDa) and PCBM (PC60BM – Mw = 911 g/mol and PC70BM – Mw = 1031 g/mol) is examined in details. The article presents significantly expanded research compared to our previous work on thermal transitions in thin films of blend P3HT (Mw = 65.2 kDa) with PC60BM. For this reason, we also compare current results with previous ones. Here, we present for the first time a phase diagram of thin films of the P3HT(Mw = 65.2 kDa):PC70BM blend using variable-temperature ellipsometry. Our research reveals the presence of characteristic temperatures of pure phases in thin films of P3HT: PCBM blends. It turns out that the cold crystallization temperature of the P3HT phase in P3HT(Mw = 65.2 kDa):PC70BM blend films is lower than corresponding temperature in P3HT(Mw = 65.2 kDa):PC60BM blend films. At the same time, the cold crystallization temperature of the PC70BM phase behaves inversely. We demonstrate also that variable-temperature spectroscopic ellipsometry is a very sensitive technique for studying thermal transitions in these thin films. In addition, we show that the entire phase diagram can be determined based on the raw ellipsometric data analysis, e.g. using a delta angle at wavelength λ = 280 nm.  相似文献   

10.
Distinct stratified and non‐stratified morphologies were developed in poly(3‐hexylthiophene) (P3HT) and poly(ethylene glycol) (PEG)‐based homopolymer blends and diblock and triblock copolymer systems. By applying X‐ray photoelectron spectroscopy, only a double‐percolation mechanism including assembling of P3HT chains into the nanofibers in solution aging process with a marginal solvent like p‐xylene as well as crystallization of PEG phase in the cast thin films resulted in vertical stratification and networked fibrils. In cast thin films whose PEG phase, due to low molecular weight or being constrained between two rigid P3HT blocks in triblock copolymers was not crystallized, a non‐stratified discrete fibrillar morphology was acquired. Crystallization of PEGs in the thin films mainly participated in networking and expelling pre‐organized P3HT fibrils to the film surface. By performing the solution aging step in a good solvent such as o‐dichlorobenzene, the P3HTs remained in a coily‐like conformation, and casting the corresponding thin films reflected the non‐stratified discrete granular and featureless morphologies. Assembling the P3HT chains in the presence of PEG phase in cast films at most led to the low‐crystalline granules instead of highly crystalline nanofibrils. No significant crystallization in either homopolymer blends or block copolymer systems conduced to a featureless morphology with homogeneous distribution of existed materials. The surface morphology and ordering in various morphologies were studied employing atomic force microscopy, grazing incidence X‐ray diffraction, and ultraviolet–visible analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
We designed and synthesized the all-conjugated diblock copolymers poly(3-hexylthiophene-block-3-(2-ethylhexyl)thiophene)s (P(3HT-b-3EHT)s) via a modified Grignard metathesis (GRIM), a type of quasi-living polymerization, and studied their microphase-separated structures. The P(3HT-b-3EHT)s synthesized had well-controlled molecular weights and very narrow polydispersity indices (PDIs), which demonstrates the usefulness of GRIM polymerization for the synthesis of semiconducting block copolymers. P(3HT-b-3EHT)s self-organized to form clear microphase-separated patterns upon thermal treatment, as observed by AFM. Interestingly, the enhancement of the interchain interaction of the P3HT segments compared with the P3HT homopolymer was clearly observed from the UV-vis spectra, despite the fact that the amount of crystalline P3HT fraction was reduced to 83% of the total polymer amount in P(3HT-b-3EHT). It is suggested that the relatively unconstrained, amorphous segments of P3EHT can enhance the crystallization of P3HT segments to form an ordered self-organized nanostructure.  相似文献   

12.
《中国化学》2018,36(5):437-442
How the conjugated polymers affect the crystallization of DR3TBDTT, in addition to the corresponding morphology and performance, is not well understood. In this work, the weakly crystalline polymer PTB7‐Th and highly crystalline polymers of PCDTBT and P3HT were incorporated into DR3TBDTT:PC71BM system to investigate the variation of crystallization, morphology and performance. It is demonstrated that PTB7‐Th is the most effective additive to improve the PCE value of DR3TBDTT:PC71BM to 5.7%, showing the nucleating agent reducing the crystallization correlation length (CCL) value of DR3TBDTT from 18.7 nm to 17.0 nm, in addition to the optimized morphology. In contrast, the PCDTBT and P3HT could induce the crystallization of DR3TBDTT, leading to much higher CCL value as well as obvious phase separation. Despite of energy level alignment, the crystallization of DR3TBDTT influenced by polymers determines the corresponding morphology of active layers and photovoltaic performance.  相似文献   

13.
Chu  Xiao  Kang  Jia-Qian  Hong  Ya  Zhu  Guo-Dong  Yan  Shou-Ke  Wang  Xue-Yun  Sun  Xiao-Li 《高分子科学》2022,40(6):692-699

Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE))/semiconducting poly(3-hexyl thiophene) (P3HT) blend systems have drawn great attention with their potential use for electronic applications, particularly non-volatile memory devices. It is essential to grasp a full understanding of the crystallization habits of the two polymers on different substrates for purposeful control of the structures of the blend and therefore the properties of the devices. Here, the effects of structure and morphology of the blend films generated at different substrate surfaces on the ferroelectric and switching properties of related devices are reported. It is identified that P(VDF-TrFE)/P3HT blend films prepared on graphene substrate show not only an obvious optimization in the ferroelectric behavior of P(VDF-TrFE), but also an enhancement of the charge transport within P3HT domains. By employing sandwich structure constructed by silver electrode and P3HT/P(VDF-TrFE) blend film on graphene substrate, high-performance ferroelectric memory devices have been obtained, which exhibit a great electrical switching behavior with high ON/OFF ratio of about 1000 and low coercive voltage of approximately 5 V. These findings provide useful guidance for fabricating high-performance ferroelectric memory devices.

  相似文献   

14.
The crystallization‐dominated and microphase separation/crystallization‐coexisted structure of the all‐conjugated diblock copolymers poly(2,5‐dihexyloxy‐p‐phenylene)‐block‐(3‐hexylthiophene) (PPP‐b‐P3HT, denoted as BmTn) with different block compositions was affected by the aggregation state of the diblock copolymers in solvents with different solubilities. For B34T66, B62T38, and B75T25, the coexistence of microphase separation and crystallization was obtained in good solvent with few crystalline aggregates. For B34T66 with a longer P3HT block, densely stacked fiber crystal structures in thin films were found by using marginal solvents with crystalline aggregations in solutions. As for B62T38 and B75T25 with shorter P3HT block and longer PPP block, crystal structures were obtained by the use of solvents with a much larger solubility difference of the two blocks. Thus, microphase‐separated structures are prone to form from solutions with coil conformation and fiber crystals from solutions with larger aggregates, which resulted in the increased crystallinity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1718–1726  相似文献   

15.
For verifying the influence of donor–acceptor supramolecules on photovoltaic properties, different hybrids were designed and used in organic solar cells. In this respect, reduced graphene oxide (rGO) was functionalization with 2‐thiophene acetic acid (rGO‐f‐TAA) and grafted with poly(3‐dodecylthiophene) (rGO‐g‐PDDT) and poly(3‐thiophene ethanol) (rGO‐g‐PTEt) to manipulate orientation of poly(3‐hexylthiophene) (P3HT) assemblies. Face‐on, edge‐on, and flat‐on orientations were detected for assembled P3HTs on rGO and its functionalized and grafted derivatives, respectively. Alteration of P3HT orientation from face‐on to flat‐on enhanced current density (J sc), fill factor (FF), and power conversion efficiency (PCE) and thus J sc = 7.11 mA cm?2, FF = 47%, and PCE = 2.14% were acquired. By adding phenyl‐C71‐butyric acid methyl ester (PC71BM) to active layers composed of pre‐designed P3HT/rGO, P3HT/rGO‐f‐TAA, P3HT/rGO‐g‐PDDT, and P3HT/rGO‐g‐PTEt hybrids, photovoltaic characteristics further improved, demonstrating that supramolecules appropriately mediated in P3HT:PC71BM solar cells. Phase separation was more intensified in best‐performing photovoltaic systems. Larger P3HT crystals assembled onto grafted rGOs (95–143 nm) may have acted as convenient templates for the larger and more intensified phase separation in P3HT:PCBM films. The best performances were reached for P3HT:P3HT/rGO‐g‐PDDT:PCBM (J sc = 9.45 mA cm?2, FF = 54%, and PCE = 3.16%) and P3HT:P3HT/rGO‐g‐PTEt:PCBM (J sc = 9.32 mA cm?2, FF = 53%, and PCE = 3.11%) photovoltaic systems. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1877–1889  相似文献   

16.
Poly(3‐hexylthiophene) (P3HT) supramolecular structures are fabricated on P3HT‐dispersed reduced graphene oxide (RGO) monolayers and surfactant‐free RGO monolayers. P3HT is able to disperse RGO in hot anisole/N,N‐dimethylformamide solvents, and forms nanowires on RGO surfaces through a RGO induced crystallization process. The TEM and AFM investigation of the resultant P3HT/RGO composites shows that P3HT nanowires grow from RGO, and connect individual RGO monolayers. Raman spectroscopy confirms the interaction between P3HT and RGO, which allows the manipulation of the RGO electrical properties. Such a bottom‐up approach provides interesting graphene‐based composites for nanometer‐scale electronics.

  相似文献   


17.
Conjugated block copolymers are potentially useful for organic electronic applications and the study of interfacial charge and energy transfer processes; yet few synthetic methods are available to prepare polymers with well‐defined conjugated blocks. Here, we report the synthesis and thin film morphology of a series of conjugated poly(3‐hexylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3HT‐b‐PF) and poly(3‐dodecylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3DDT‐b‐PF) block copolymers prepared by functional external initiators and click chemistry. Functional group control is quantified by proton nuclear magnetic resonance spectroscopy, size‐exclusion chromatography, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The thin film morphology of the resulting all‐conjugated block copolymers is analyzed by a combination of grazing‐incidence X‐ray scattering, atomic force microscopy, and transmission electron microscopy. Crystallization of the P3HT or P3DDT blocks is present in thin films for all materials studied, and P3DDT‐b‐PF films exhibit significant PF/P3DDT co‐crystallization. Processing conditions are found to impact thin film crystallinity and orientation of the π–π stacking direction of polymer crystallites. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 154–163  相似文献   

18.
Crystallization‐induced vertical stratified structures were constructed based on double‐crystalline poly(3‐hexylthiophene) (P3HT)/poly(ethylene glycol)s (PEG) systems at room temperature, in which the P3HT crystallinity and the mechanism were investigated. Vertical stratified microstructures with highly crystalline P3HT network on the surface were formed when depositing from marginal solvents, while lateral phase‐separated structures or low P3HT crystallinity were observed for good solvents. The morphological differences came from the solvent effect. In marginal solvents, p‐xylene and dichloromethane, P3HT large‐scale microcrystallites were generated in solution, which ensured the priority of P3HT crystalline sequence, and phase separation began in the liquid states. When the PEG matrix began to crystallize, great energy from which the second phase separation was induced drove P3HT crystallites to the surface, resulting in the formation of vertical stratified microstructures with highly crystalline P3HT network on the surface. The method, crystallization‐induced phase segregation of crystalline–crystalline blends in marginal solvent, provides a facile way to construct vertically stratified structures, in which P3HT highly crystalline network is favored.

  相似文献   


19.
An exemplary system suitable for optoelectronics applications, i.e. poly(3-hexylthiophene), hereinafter P3HT, deposited by spin casting onto silicon substrates functionalised by three selected molecules and then properly annealed, has been examined. Grazing Incidence X-ray Scattering (GIXS) measurements have been performed with 4-circle diffractometer, allowing for a fine control of sample axes movement.By choosing different grazing incident angles, diffraction patterns from different layers of polymeric thin films have been recorded. Both in-plane and out-of-plane geometries have been combined in order to obtain complementary structural information. In this way structural and orientational differences of the polymer along with the film thickness (?50 nm) have been highlighted. For all P3HT films spun on functionalized Si wafer, macromolecular layers close to the substrate surface give some evidence of higher order and orientation than those outmost the surface, and this behaviour is pronounced to a different extent depending on the functionalized molecules used. Contrariwise P3HT layers deposited onto bare Si wafer display reduced orientation and decreased crystallite size, especially at buried interface.  相似文献   

20.
We report on the evolution of the chain orientation of a representative π-conjugated polymer, poly(3-hexylthiophene) (P3HT), during the solution-casting process, as monitored using polarized Raman spectroscopy. These measurements point to the formation of a liquid-crystalline phase of P3HT solutions within a specific time period during solvent evaporation, which leads to a conducting channel. These conclusions are based on the angular dependence of polarized Raman scattering peaks, the anisotropy in the fluorescence background signal, analysis of the scattering-peak shape, and direct observations of the three-phase contact line in an optical microscope under crossed polarizers. These results shed new light on the evolution of chain alignment and thus materials nanostructure, specifically in solution-processed P3HT and more generally in π-conjugated systems. They may further enable the design of improved materials and processes for this important class of polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号