首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a convenient and fast approach to preparing close-packed two-dimensional (2-D) particle arrays on mercury surfaces. Addition of cosolvents, such as alcohols, to aqueous colloidal particle suspensions induces spreading and self-assembly of the particles into 2-D arrays on top of the mercury surface. We can fabricate large-area close-packed 2-D arrays (>70 cm(2)) within 30 s. We attached these 2-D arrays to functional hydrogel films such that the 2-D array spacings were altered by the hydrogel volume response to the environment. We directly observed the hydrogel volume induced 2-D array spacing changes by using confocal laser scanning microscopy to monitor the spacings of fluorescent polystyrene particle 2-D arrays in response to changes in pH, solvent composition, temperature, etc.  相似文献   

2.
Double emulsion droplets encapsulating crystalline colloidal arrays (CCAs) with a narrow size distribution were produced using an optofluidic device. The shell phase of the double emulsion was a photocurable resin that was photopolymerized downstream of the fluidic channel within 1 s after drop generation. The present optofluidic synthesis scheme was very effective for fabricating highly monodisperse spherical CCAs that were made structurally stable by in situ photopolymerization of the encapsulating shells. The shell thickness and the number of core emulsion drops could be controlled by varying the flow rates of the three coflowing streams in the dripping regime. The spherical CCAs confined in the shell exhibited distinct diffraction patterns in the visible range, in contrast to conventional film-type CCAs. As a result of their structure, the spherical CCAs exhibited photonic band gaps for normal incident light independent of the position on the spherical surface. This property was induced by heterogeneous nucleation at the smooth wall of the spherical emulsion drop during crystallization into a face-centered cubic (fcc) structure. On the other hand, the solidified shells did not permit the penetration of ionic species, enabling the CCAs to maintain their structure in a continuous aqueous phase of high ionic strength for at least 1 month. In addition, the evaporation of water molecules inside the shell was slowed considerably when the core-shell microparticles were exposed to air: It took approximately 6 h for a suspension encapsulated in a thick shell to evaporate completely, which is approximately 1000 times longer than the evaporation time for water droplets with the same volume. Finally, the spherical CCAs additionally exhibited enhanced stability against external electric fields. The spherical geometry and high dielectric constant of the suspension contributed to reducing the electric field inside the shell, thereby inhibiting the electrophoretic movement of the charged particles.  相似文献   

3.
Thermoresponsive core-shell microspheres are prepared and functionalized with 3-aminophenylboronic acid to make them responsive to glucose.The volume phase transition of the resulting particles is shifted to a lower temperature and a clear swelling is caused by the presence of glucose.The particles after the functionalization preserved their capability to form crystalline colloidal arrays.The changes of their properties may be used in the design of glucose sensors.  相似文献   

4.
The influence of surface modification on the luminescence of colloidal ZnO nanocrystals is described, with particular emphasis given to factors increasing excitonic emission quantum yields. Changes in nanocrystal size, shape, and luminescence intensities have been measured for nanocrystals capped by dodecylamine (DDA) and trioctylphosphine oxide after different growth times. Green trap emission intensities show a direct correlation with surface hydroxide concentrations. Contrary to expectations, there is no direct correlation between excitonic emission quenching and surface hydroxide concentrations. The nearly pure excitonic emission observed after heating in DDA is attributed to the removal of surface defects from the ZnO nanocrystal surfaces and to the relatively high packing density of DDA on the ZnO surfaces. Rapid, nondispersive ripening of ZnO nanocrystals upon heating in DDA is observed and explained using a colloidal growth model.  相似文献   

5.
6.
Titania coated monodisperse silica spheres have been synthesized and fabricated as a close-packed colloidal crystalline array. We have demonstrated that the coated colloidal sphere can be used to control the peak position of the optical stop band through variation of the coating thickness. The titania coated silica spheres were prepared by the layer-by-layer assembly coating process, which reciprocally laminates the cationic polyelectrolyte and the anionic titania nanosheets on a monodisperse silica spheres, and were sintered to change the titania nanosheets to anatase. The Bragg diffraction peak of the colloidal crystalline array shifted to the long wavelength region with an increase of thickness of the titania layer. Angle-resolved reflection spectra measurements clarified that the red shift was caused by increasing of the refractive index with increase of the thickness of the layer. The current work suggests new possibilities for the creation of advanced colloidal crystalline arrays with tunable optical properties from tailored colloidal spheres.  相似文献   

7.
We have demonstrated that polystyrene latex coated with titania nanosheets can be fabricated into a close-packed colloidal crystalline array, and that these coated colloidal spheres can be used to control the peak position of optical stop bands through the coating. The titania-nanosheets-coated polystyrene latex was prepared by the layer-by-layer (LBL) assembly coating process, involving alternating lamination of cationic polyelectrolytes and anionic titania nanosheets on monodisperse polystyrene latex particles. The Bragg diffraction peak of the colloidal crystalline array shifted to longer wavelengths with the coating of titania nanosheets. This red shift was caused by an increase in refractive index upon coating, as revealed by angle-resolved reflection spectra measurements. The current work suggests new possibilities for the creation of advanced colloidal crystals having tunable optical properties from tailored colloidal spheres.  相似文献   

8.
The reversible variation in the observed stop band of a hydrogel-encapsulated crystalline colloidal array was achieved through the selective formation and destruction of -S-Pb-S- linkages within the hydrogel. A reversible 45 nm stop band shift could be achieved with a cyclical treatment of Pb(2+) and then dithiothreitol solution.  相似文献   

9.
We have examined the changes in the optical properties and microstructure of polymer-immobilized non-close-packed colloidal crystalline arrays with compression and shearing stress. The optical properties and microstructures of the arrays were measured by angle-resolved reflection spectroscopy. The spectra indicate an increase in the refractive index and a decrease in the interplane spacing with compression, however, indicating an increase in the interplane spacing with shearing stress. These results show that compression decreases the interplane spacing without moving the inner-plane position, while shearing stress increases the interplane spacing by moving the position of the spheres in the same plane.  相似文献   

10.
Nanoparticles (NPs) exhibit interesting size-dependent electrical, optical, magnetic, and chemical properties that cannot be observed in their bulk counterparts. The synthesis of NPs (i.e., crystalline particles ranging in size from 1 to 100 nm) has been intensely studied in the past decades. Magnetic nanoparticles (MNPs) form a particularly attractive class of NPs and have found numerous applications such as in magnetic resonance imaging to visualize cancer, cardiovascular, neurological and other diseases. Other uses include drug targeting, tissue imaging, magnetic immobilization, hyperthermia, and magnetic resonance imaging. MNPs, due to their magnetic properties, can be easily separated from (often complex) matrices and manipulated by applying external magnetic field. Near-infrared to visible upconversion luminescent nanoparticles (UCLNPs) form another type of unusual nanoparticles. They are capable of emitting visible light upon NIR light excitation. Lanthanide-doped (Yb, Er) hexagonal NaYF? UCLNPs are the most efficient upconversion phosphors known up to now. The use of UCLNPs for in vitro imaging of cancer cells and in vivo imaging in tissues has been demonstrated. UCLNPs show great potential as a new class of luminophores for biological, biomedical, and sensor applications. We are reporting here on our first results on the combination of MNP and UCLNP technology within an ongoing project supported by the DFG and the FWF (Austria).  相似文献   

11.
The effects of medium composition on the optical properties and microstructures of non-close-packed silica colloidal crystalline arrays have been demonstrated. Water–alcohol mixtures were used as dispersion media for these arrays. Optical properties and microstructures were examined using angle-resolved reflection spectra measurements. The Bragg diffraction peaks of the colloidal crystalline arrays shifted with changing of concentration or hydrocarbon number of alcohol. With an increase in concentration or hydrocarbon number of alcohol, the effective refractive index of the dispersion increased and the interplanar spacing of the colloidal crystalline array decreased. The increase in effective refractive index was caused by an increase in the refractive index of the mixed medium with the change in solvent. The decrease in interplanar spacing of the array was caused by decreased electrostatic repulsions between the silica spheres with decreasing dielectric constant. The current work suggests new possibilities for the control of optical properties and microstructures of colloidal crystalline arrays.  相似文献   

12.
This study reports the development of a novel sensing material that reports on analyte concentrations via diffraction of visible light from polymerized crystalline colloidal arrays (PCCA). The PCCA contains periodic crystalline colloidal array (CCA) of spherical polystyrene colloids. This new method permanently locks the order of the CCA by embedding the CCA into a polymer network. These materials are mostly used in the development of novel materials which are basically called sensors for metal ions and all kinds of organic molecules. The polymer around the crystalline colloid can be functionalized with some recognition molecule, making these materials useful as optical sensors. We developed a sensor, utilizing crown ether, 2-aminomethyl-18-crown-6 (2A18C6) as the recognition agent, that detects K+ in the concentration range from 5 to 160 ppm.  相似文献   

13.
针对荧光分子检测普遍灵敏度低和检测范围窄的问题,制备了具有等离子激元共振特性的重掺杂半导体纳米结构Cu2-xS和典型的稀土掺杂上转换发光纳米颗粒NaYF4:Yb,Er,通过三相界面自组装方法获得了Cu2-xS/NaYF4:Yb,Er薄膜基底。结合有限元模拟,计算了不同摆放情况下Cu2-xS周围的局域电场分布,研究了在实际薄膜中Cu2-xS纳米盘之间产生的等离激元耦合对上转换发光性能以及对拉曼信号增强的影响。结果表明,Cu2-xS等离激元层与NaYF4:Yb,Er发光层的耦合,不仅得到了上转换3个数量级的提高,还实现了分子检测10-7 mol·L-1的检测极限,并且获得了10-3~10-7 mol·L-1的宽线性响应,从而达到高灵敏度的定性和定量双功能的精确检测。  相似文献   

14.
针对荧光分子检测普遍灵敏度低和检测范围窄的问题,制备了具有等离子激元共振特性的重掺杂半导体纳米结构Cu2-xS和典型的稀土掺杂上转换发光纳米颗粒NaYF4∶Yb,Er,通过三相界面自组装方法获得了Cu2-xS/NaYF4∶Yb,Er薄膜基底。结合有限元模拟,计算了不同摆放情况下Cu2-xS周围的局域电场分布,研究了在实际薄膜中Cu2-xS纳米盘之间产生的等离激元耦合对上转换发光性能以及对拉曼信号增强的影响。结果表明,Cu2-xS等离激元层与NaYF4∶Yb,Er发光层的耦合,不仅得到了上转换 3个数量级的提高,还实现了分子检测 10-7 mol·L-1的检测极限,并且获得了 10-3~10-7 mol·L-1的宽线性响应,从而达到高灵敏度的定性和定量双功能的精确检测。  相似文献   

15.
Synthesis of nanocrystals that exhibit strong upconversion (UC) luminescence upon infrared excitation has been challenging due to the stringent control needed over experimental variables. Herein, we report a method to synthesize nanocrystals demonstrating high UC at room temperature in aqueous solution on graphene.  相似文献   

16.
Xu Y  Jiang H  Wang E 《Electrophoresis》2007,28(24):4597-4605
Herein, a hybrid system consisting of ionic liquid (IL) and nonionic surfactant has been successfully developed for dynamic modification of PDMS microchips and analyte adsorption such as fluoresent dyes and proteins has been efficiently suppressed. Mutual authentication between microchip electrophoresis and confocal laser scanning microscope was carried out to characterize the multiple novel functions of the IL-containing system and a possible mechanism was raised. Soluble IL used herein not only played the role as supporting electrolyte, but also provided increased EOF in the PDMS microchannel compared with common electrolytes such as phosphate buffer. Due to the high ionic conductivity of IL, on-column field-amplified sample stacking effect was four-fold higher than that without IL. Furthermore, an excellent synergistic effect existed between IL and nonionic surfactant, which enhanced the ability of resolving analyte adsorption to PDMS surface, and was demonstrated in the sensitive and efficient determination of rhodamine B (with detection limit of 8 nM) and a well separated mixture of proteins.  相似文献   

17.
Facile preparation and upconversion luminescence of graphene quantum dots   总被引:1,自引:0,他引:1  
A facile hydrazine hydrate reduction of graphene oxide (GO) with surface-passivated by a polyethylene glycol (PEG) method for the fabrication of graphene quantum dots (GQDs) with frequency upconverted emission is presented. And we speculate on the upconversion luminescence due to the anti-Stokes photoluminescence (ASPL), where the δE between the π and σ orbitals is near 1.1 eV.  相似文献   

18.
The first energetically conjoined TTA‐assisted photon energy upconversion operating in cell tissue is described. The synthesized nanocapsules with the encapsulated UC dye system consisting of an emitter and a sensitizer show very efficient UC emission in aqueous dispersion under extremely low excitation intensity down to 0.05 W · cm?2 so that tissue and cells are not affected by the excitation light. The demonstrated sub‐linear intensity dependence of the UC emission is of crucial importance for life‐science applications as the UC photon could serve as a local or in situ optical excitation source for subsequent light‐triggered processes.

  相似文献   


19.
Colloidal graphite having nano- and microparticles and exhibiting fluorescence properties was prepared by the destruction of the glassy carbon anode in the electrolyte containing hydrochloric acid and α-olefin C16-C18.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号