首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of amide-based molecular knots equipped selectively with fluorescent dansyl and/or pyrenesulfonyl moieties were synthesized from the readily available tris(allyloxy)knotane. UV/Vis absorption spectra, emission spectra, and the emission lifetimes of the fluorescent knotanes were investigated in chloroform at 298 K. The absorption spectra of the knotanes correspond to those of mixtures of their UV-active constituents. The fluorescence quantum yields and lifetimes of the dansyl and pyrenesulfonyl moieties are partly quenched by the knotane platform. In the KN(Da)(2)(Py) species, the fluorescent excited state of the dansyl units (lambda(max)=510 nm) lies at lower energy than the fluorescent excited state of the pyrenesulfonyl unit (lambda(max)=385 nm), the emission of which is accordingly quenched with sensitization of the dansyl fluorescence. In the KN(Ao)(2)(Da), KN(Ao)(Da)(2), and KN(Da)(3) species, the addition of acids causes the protonation of their dansyl units with a consequent decrease in the intensity of the dansyl band at 510 nm and appearance of the emission band of the protonated dansyl unit (lambda(max)=340 nm). Each dansyl unit of KN(Ao)(Da)(2) and KN(Da)(3) undergoes the independent protonation. In these incompletely protonated knotanes the fluorescence of the protonated dansyl units is partly quenched by nonprotonated ones. These processes can be quantitatively reversed upon addition of a base. In KN(Da)(2)(Py), an increase of the fluorescence of its pyrenesulfonyl group is observed when the dansyl groups are protonated. The results obtained show that the readily available and easily functionalizable amide-knotanes can be used as an interesting scaffold to obtain fluorescent switches.  相似文献   

2.
The absorbance, fluorescence, and refractive index of a photochromic material can be modulated under the influence of optical stimulations. The reversible modification of these macroscopic properties is a result of photoinduced transformations at the molecular level. These processes can be exploited to mediate the interplay of optical signals and offer the opportunity to design and implement photonic devices for optical processing based on molecular components.  相似文献   

3.
The design, synthesis, and evaluation of new rhodamine spiroamides are described. These molecules have applications in optical nanoscopy based on random switching of the fluorescent single molecules. The new markers may be used in (co)localization studies of various objects and their (mutual) positions and shape can be determined with a precision of a few tens of nanometers. Multicolor staining, good photoactivation, a large number of emitted photons, and selective chemical binding with amino or thiol groups were achieved due to the presence of various functional groups on the rhodamine spiroamides. Rigidized sulfonated xanthene fragment fused with six‐membered rings, N,N′‐bis(2,2,2‐trifluoroethyl) groups, and a combination of additional double bonds and sulfonic acid groups with simple aliphatic spiroamide residue provide multicolor properties and improve performance of the rhodamine spiroamides in photoactivation and bioconjugation reactions. Having both essential parts of the photoswitchable assembly—the switching and the fluorescent (reporter) groups—combined in one chemical entity make this approach attractive for further development. A series of rhodamine spiroamides is presented along with characterizations of their most relevant properties for application as fluorescent probes in single‐molecule switching and localization microscopy. Optical images with resolutions on the nanometer scale illustrate the potential of the labels in the colocalization of biological objects and the two‐photon activation technique with optical sectioning.  相似文献   

4.
Systematic variation of the molecular symmetry in a photochromic system based on a 1,2-bis(2-methylbenzo[b]thiophen-3-yl)hexafluorocyclopentene group, connected by decyl spacers to two cyanobiphenyl groups as mesogens, allows for a systematic investigation of the correlations between molecular shape and symmetry, electronic effects, photochromic conversion and liquid-crystalline properties.  相似文献   

5.
6.
7.
An azamacrocyclic ligand (L) containing two anthracene (AN) fragments connected through two triethylenetetramine bridges has been synthesized, in which each of the bridges can coordinate with one metal cation. The effects of pH and metal cations (Zn2+ and Cd2+) on the emission properties of L were studied in water. Without metal cations, L does not show any emission at basic pH values. The addition of Zn2+ leads to the production of excimer emission, which is due to a static excimer formed by direct excitation of the intramolecular ground-state dimer of the bipolar AN fragments that approach each other by Zn2+ binding. In contrast, Cd2+ addition does not result in excimer emission because the Cd2+-AN pi complex, formed by donation of a pi electron of the AN fragments to the adjacent Cd2+, suppresses pi-stacking interactions of the AN fragments. The most notable feature is the appearance of excimer emission controlled by the input sequence of metal cations: Zn2+-->Cd2+ sequential addition (each one equivalent) allows excimer emission, whereas the reverse sequence (Cd2+-->Zn2+) does not. In the Zn2+-->Cd2+ sequence, Cd2+ coordination is structurally restricted by the first Zn2+ coordination with the other polyamine bridge, leading to the formation of a weak Cd2+-AN pi complex. In contrast, for the reverse sequence, the first Cd2+ coordination forms a stable Cd2+-AN pi complex, which is not weakened by sequential Zn2+ coordination, resulting in no excimer emission.  相似文献   

8.
9.
The covalent attachment of a carbazole fluorophore to an oxazine photochrome permits the reversible activation of fluorescence under optical control. Ultraviolet irradiation with a pulsed laser opens the oxazine ring to shift bathochromically the absorption of the carbazole component. Concomitant visible illumination excites selectively the carbazole fluorophore of the photochemical product to produce fluorescence. The photogenerated and fluorescent species reverts spontaneously on a submicrosecond timescale to the initial nonemissive state of the carbazole–oxazine dyad. The photochemical and photophysical properties engineered into this particular molecular switch allow the convenient monitoring of plasmonic effects on photochemical reactions with fluorescence measurements. In close proximity to silver nanoparticles, visible illumination with a continuous‐wave laser also results in fluorescence activation. The metallic nanostructures enable the two‐photon excitation of the oxazine component to induce the photochromic transformation and then facilitate the one‐photon excitation of the photochemical product to generate fluorescence. Thus, these operating principles offer the opportunity to avoid altogether the need of pulsed ultraviolet irradiation to trigger the photochromic transformation and, instead, allow fluorescence activation with a single visible source operating at low illumination power.  相似文献   

10.
A new photochromic bisthienylethene system (BTE? NAFc) is reported in which the ferrocene unit (Fc) is incorporated into a naphthalimide chromophore as the central ethene bridging unit. The incorporated Fc unit in the photochromic system of BTE? NAFc has several effects on optical properties, such as fluorescence‐modulation through photoinduced electron transfer (PET), a decrease in the photochromic cyclization quantum yield, and a selective two‐step oxidation process. The ability to drive ring‐opening and ring‐closing reactions with a secondary redox‐modulation provides increased functionality to the photochromic system. Based on these meaningful photo‐ and redox‐modulation properties, five unprecedented multi‐addressable states (BTE? NAFc, BTE? NAFc+, c‐BTE? NAFc, c‐BTE? NAFc+, and BTE+? NAFc+) and gated photochromism are successfully obtained within the unimolecular BTE platform, thus providing deeper insight into photochromic systems as multifunctional outputs.  相似文献   

11.
12.
A designed bis(dithienyl) dicyanoethene‐based, strictly E/Z photoswitch (4TCE) operates through state‐selective (E and Z isomer) photoactivation with visible light. The E and Z isomers of 4TCE exhibit remarkably different spectroscopic characteristics, including a large separation (70 nm) in their absorption maxima (λmax) and a 2.5‐fold increase in molar extinction coefficient from cis to trans. The energetically stable trans form can be completely converted to the cis form within minutes when exposed to white light, whereas the reverse isomerization occurs readily upon irradiation by blue light (λ<480 nm) or completely by thermal conversion at elevated temperatures. These features together with excellent thermal stability and photostability of both isomers make this new E/Z photoswitch a promising building block for photoswitchable materials that operate without the need for UV light.  相似文献   

13.
14.
The review is concerned with advances in molecular elecronics and spintronics as applied to the design of hardware components for molecular computers (molecular switches; optical, redox-based, and magnetic molecular memory; and conducting molecular materials). Based on materials of a plenary lecture held at the XVIIIth Mendeleev Congress, Moscow, Russia, 2007. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 673–703, April, 2008.  相似文献   

15.
An excess of bis-1,3-(4-iodophenyl)bicyclo[1.1.1]pentane, prepared in 63 % yield by iodination of 1,3-diphenylbicyclo[1.1.1]pentane, was selectively mono-coupled with 9-ethynyl-1,5-dimethoxy-10-phenylethynylanthracene (26), and subsequently with the zinc derivatives of 1-(2-methyl/methoxy-4-methyl-5-phenylthiophen-3-yl)-2-(2-methyl/methoxy-4-methylthiophen-3-yl)perfluorocyclopentenes (38-H-41-H). Regioselective synthesis of the 2-unsubstituted thiophenes 38-H-41-H required intermediate preparation of 2-trimethylsilyl-3,5-dimethyl-4-bromothiophene (37) or 2-trimethylsilyl-5-methoxy-3-methyl-4-bromothiophene (40). Protection of the alpha-position of the thiophene ring with a 2-trimethylsilyl group blocks the rearrangement of the 4-lithio derivatives into the corresponding 2-lithiated thiophenes. With the bicyclo[1.1.1]pentane fragment linking the photochromic units 1-3 and 1,5-dimethoxy-9,10-di(phenylethynyl)anthracene as a fluorescent part, quantitative resonance energy transfer between the excited state of the fluorophore (donor) and the closed form of the photochromic units 1-3 (acceptors) was observed. The closed forms of the methoxy-substituted photochromic units 2 and 3 are less resistant to UV light (313 nm) than the closed form of 1.  相似文献   

16.
Spin‐crossover metal complexes are highly promising magnetic molecular switches for prospective molecule‐based devices. The spin‐crossover molecular photoswitches developed so far operate either at very low temperatures or in the liquid phase, which hinders practical applications. Herein, we present a molecular spin‐crossover iron(II) complex that can be switched between paramagnetic high‐spin and diamagnetic low‐spin states with light at room temperature in the solid state. The reversible photoswitching is induced by alternating irradiation with ultraviolet and visible light and proceeds at the molecular level.  相似文献   

17.
The performance of fluorenylidene-pyrroline (FPs) and N-alkylated fluorenylidene-pyrroline (NAFPs) derivatives for their use as light-driven molecular switches has been studied. Both types of compounds share fast and controllable photoisomerization. Other competitive reaction pathways that could lead to low efficiency have been considered. Only weak fluorescence was measured and high photostability was found when irradiating these compounds for long times, together with high photoisomerization quantum yields. NAFPs are capable of using visible light, which could be useful for practical applications.  相似文献   

18.
Pyrazolo[3,4‐b]quinoline derivatives are reported to be highly efficient organic fluorescent materials suitable for applications in light‐emitting devices. Although their fluorescence remains stable in organic solvents or in aqueous solution even in the presence of H2O, halide salts (LiCl), alkali (NaOH) and weak acid (acetic acid), it suffers an efficient quenching process in the presence of protic acid (HCl) in aqueous or ethanolic solution. This quenching process is accompanied by a change in the UV spectrum, but it is reversible and can be fully recovered. Both steady‐state and transient fluorescence spectra of 1‐phenyl‐3,4‐dimethyl‐1H‐pyrazolo‐[3,4‐b]quinoline (PAQ5) during quenching are measured and analyzed. It is found that a combined dynamic and static quenching mechanism is responsible for the quenching processes. The ground‐state proton‐transfer complex [PAQ5 ??? H+] is responsible for static quenching. It changes linearly with proton concentration [H+] with a bimolecular association constant KS=1.95 M ?1 controlled by the equilibrium dissociation of HCl in ethanol. A dynamic quenching constant KD=22.4 M ?1 is obtained by fitting to the Stern–Volmer equation, with a bimolecular dynamic quenching rate constant kd=1.03×109 s?1 M ?1 under ambient conditions. A change in electron distribution is simulated and explains the experiment results.  相似文献   

19.
Silvia Giordani 《Tetrahedron》2004,60(48):10973-10981
The identification of strategies to establish communication between independent molecules is an essential requirement for the development of operating principles to manipulate information at the molecular level. In this context, we have devised a strategy to exchange signals between pairs of complementary molecular switches. It is based on the photoinduced ring closing of a merocyanine to produce a spiropyran with the concomitant release of a proton. The liberated proton is captured by either one of two pyridine derivatives with the formation of their conjugate acids. This transformation induces a significant increase in chemical shift for the resonances of the pyridyl protons and, in one instance, also a pronounced color change. The overall process is fully reversible and the pair of communicating molecules reverts to the original state in the dark. Relying on this mechanism, an optical input is transduced into a detectable spectroscopic output after the controlled intermolecular exchange of protons. A simple analysis of the signal transduction operated by the communicating molecular switches reveals that a binary digit is passed unaltered from the input to the output even although the nature of the signal carrying the information changes at each step. Furthermore, the different nature of input and output implies that the state of the ensemble of molecules can be probed non-destructively at any point in time. The timescales of the switching steps, however, are seriously limited by the slow reaction kinetics. The photoinduced transformation occurs within minutes, but the thermal reaction reverts the switch state only after several hours.  相似文献   

20.
Two new structurally related photoswitches are described, in which azobenzene photochromism is combined with the chirality of a 2,2'-dihydroxy-1,1'-binaphthyl unit. In system 1 the chiral binaphthyl moiety is bridged by a methylene tether, locking the biaryl chirality while in system 2 the biaryl core is unbridged and has considerable conformational flexibility. Both compound are capable of inducing cholesteric liquid crystalline phases and proved to be good photoswitches both in solution and in a liquid crystalline matrix. Compound 2 is capable of completely reversing the liquid crystalline chirality which is unique for a chiroptical molecular switch where the switching unit and the chiral moiety are separate entities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号