首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 819 毫秒
1.
In the theory of elastic thin plates, the bending of a rectangular plate on the elastic foundation is also a difficult problem. This paper provides a rigorous solution by the method of superposition. It satisfies the differential equation, the boundary conditions of the edges and the free corners. Thus we are led to a system of infinite simultaneous equations. The problem solved is for a plate with a concentrated load at its center. The reactive forces from the foundation should be made to be in equilibrium with the concentrated force to see whether our calculation is correct or not.  相似文献   

2.
SINGULAR SOLUTIONS OF ANISOTROPIC PLATE WITH AN ELLIPTICAL HOLE OR A CRACK   总被引:2,自引:1,他引:2  
In the present paper, closed form singular solutions for an infinite anisotropic plate with an elliptic hole or crack are derived based on the Stroh-type formalism for the general anisotropic plate. With the solutions, the hoop stresses and hoop moments around the elliptic hole as well as the stress intensity factors at the crack tip under concentrated in-plane stresses and bending moments are obtained. The singular solutions can be used for approximate analysis of an anisotropic plate weakened by a hole or a crack under concentrated forces and moments.They can also be used as fundamental solutions of boundary integral equations in BEM analysis for anisotropic plates with holes or cracks under general force and boundary conditions.  相似文献   

3.
采用双向梁函数组合级数逼近的方法构造粘-弹层合悬臂板的横向位移函数,用里兹法得悬臂板在集中力作用下的弯曲变形。用拉格朗日方程求出了板自由振动的频率和结构损耗因子;给出粘-弹层合悬臂板在集中力突然撤去以后瞬态响应的近似解析解。另外,分析了阻尼层损耗因子、弹性模量及厚度对响应的影响。  相似文献   

4.
基于LCF-Kriging模型的结构多失效模式可靠度计算   总被引:1,自引:0,他引:1  
针对多失效模式下结构体系可靠度计算中的代理模型构建成本与计算精度如何权衡的问题,本文以减小体系失效概率预测方差为出发点,推导出最大贡献函数(LCF-Largest Contribution Function)来识别对体系失效概率方差影响较大的样本。LCF函数可减少对体系失效概率方差影响较小区域内样本数量,进而提高代理模型的计算效率;通过置信水平和允许相对误差建立LCF函数的学习停止条件,能够保证已有样本信息不浪费。本文选取能够对多个功能函数联合构建的多输出Kriging模型作为代理模型,基于LCF-Kriging模型并结合MCS对体系可靠度进行计算,功能函数的相关性可通过各失效模式的逻辑关系予以考虑。数值算例表明,在适当的学习停止条件下,对于串联、并联和串并混联的结构体系可靠度评估,本文方法均能在计算精度和计算效率之间达到满意平衡。  相似文献   

5.
A static, purely flexural mechanical analysis is presented for a Kirchhoff solid circular plate, deflected by a transverse central force, and clamped along two antipodal arcs, the remaining part of the boundary being free. By adopting an integral formulation, the contact reaction is assumed to be formed by four equal concentrated forces acting at the support extremities, accompanied by two distributed moments with radial and circumferential axis, respectively. This plate problem is rephrased in terms of a complex-valued Hilbert singular integral equation of the second kind, whose solution is obtained in analytical, integral form. A design chart is presented that reports the plate central deflection as a function of the angular width of the plate supports.  相似文献   

6.
在边界积分法中引用了拟基本系统矩形板,在该拟基本系统与实际系统之间应用功的互等定理,得到一挠曲面方程的积分表达式,只要对此表达式进行极简单的积分便可得到该挠曲面方程,这比直接求解Reissner挠度控制方程要简单,边界积分法的求解过程概念清晰,计算伊始便给出了挠曲面方程的总体表达式.以Reissner厚板理论为基础,应用边界积分法研究了角点悬空厚矩形板的弯曲问题,给出了在集中荷载作用下两邻边固定另两邻边自由且角点悬空弯曲厚矩形板的封闭解析解,并给出了相应的数据和图表以供工程上的应用和参考.  相似文献   

7.
GREEN'SFUNCTIONSOFTWO-DIMENSIONALANISOTROPIC BODY WITH A PARABOLIC BOUNDARY(胡元太)(赵兴华)GREEN'SFUNCTIONSOFTWO-DIMENSIONALANISOTROP?..  相似文献   

8.
The cantilever follower force problem with external damping is extended to a three-parameter case, including a concentrated mass, a linear elastic spring, and a partial follower force at the free end. As a result of the study an unexpected, hitherto unrecognized feature of stability/vibration is identified.Normally, the boundary conditions have great influence on the stability limits. However, it is proved that there exists a force at which the critical frequency is independent of all three boundary parameters. The characteristics of this force/frequency combination are discussed in detail, especially in relation to the corresponding eigenfunctions.Also a direct study of the onset of flutter as a function of the boundary parameters is included.  相似文献   

9.
基于能量变分原理,拟定轴向荷载作用下箱梁的纵向位移函数,得到关于翼板剪切变形引起的位移差函数的基本微分方程,继而推导出箱梁翼板纵向应力表达式,并首次得出角隅轴向荷载作用下翼板出现应力不均匀分布的荷载及边界条件。通过对一模型箱梁进行计算,并与通用有限元软件ANSYS壳单元计算结果进行比较,验证了该方法和所推导公式的正确性。研究结果表明,当作用于简支箱梁截面角隅处的轴向荷载(合力无偏心)为集中或分布荷载时,翼板不产生纵向应力不均匀现象;当作用于悬臂箱梁截面角隅处的轴向荷载(合力无偏心)为集中荷载时,翼板不产生纵向应力不均匀现象,而当荷载轴向分布时,翼板将产生纵向应力不均匀现象。实际工程中,横力弯曲使悬臂箱梁产生剪力滞效应,这种效应会与轴向分布荷载产生的效应叠加,设计时对此应予以充分考虑。  相似文献   

10.
We investigate the problem of linear water wave propagation under a set of elastic plates of variable properties. The problem is two-dimensional, but we allow the waves to be incident from an angle. Since the properties of the elastic plates can be set arbitrarily, the solution method can also be applied to model regions of open water as well as elastic plates. We assume that the boundary conditions at the plate edges are the free boundary conditions, although the method could be extended straightforwardly to cover other possible boundary conditions. The solution method is based on an eigenfunction expansion under each elastic plate and on matching these expansions at each plate boundary. We choose the number of matching conditions so that we have fewer equations than unknowns. The extra equations are found by applying the free-edge boundary conditions. We show that our results agree with previous work and that they satisfy the energy balance condition. We also compare our results with a series of experiments using floating elastic plates, which were performed in a two-dimensional wave tank.  相似文献   

11.
This paper points out the former work does not fulfill the boundary conditions that the concentrated force at the four corner points should not exist. Therefore, Ritz method adopted by the author concerned in the illustrative example will not be convergent in the best way. Moreover, Garlerkin method which is illustrated in this paper may carry out incorrect results if we apply its formulae. We have proved that the boundary conditions which govern the concentrated force equal to zero at the four corner points are indispensable if the problem is properly set.  相似文献   

12.
We are concerned with the deformation of thin, flat annular plates under a force applied orthogonally to the plane of the plate. This mechanical process can be described via a radial formulation of the Föppl – von Kármán equations, a set of nonlinear partial differential equations describing the deflections of thin flat plates. We are able to obtain analytical solutions for the radial Föppl – von Kármán equations with boundary conditions relevant for clamped, loosely clamped, and free inner and outer. This permits us to study the qualitative behavior of the out-of-plane deflections as well as the Airy stress function for a number of cases. Provided that an appropriate non-dimensionalization is taken, we find that the perturbation solutions are surprisingly valid for a wide variety of parameters, and compare favorably with numerical simulations in all cases (rather than just for small parameters). The results demonstrate that the ratio of the inner to outer radius of the annular plate will strongly influence the properties of the solutions, as will the specific boundary data considered. For instance, one may choose to fix the plate in place with a specific set of boundary conditions, in order to minimize the out-of-plane deflections. Other boundary conditions may result in undesirable behaviors.  相似文献   

13.
The series composed by beam mode function is used to approximate the displacement function of constrained damping of laminated cantilever plates, and the transverse deformation of the plate on which a concentrated force is acted is calculated using the principle of virtual work.By solving Lagrange's equation, the frequencies and model loss factors of free vibration of the plate are obtained, then the transient response of constrained damping of laminated cantilever plate is obtained, when the concentrated force is withdrawn suddenly.The theoretical calculations are compared with the experimental data, the results show:both the frequencies and the response time of theoretical calculation and its variational law with the parameters of the damping layer are identical with experimental results.Also, the response time of steel cantilever plate, unconstrained damping cantilever plate and constrained damping cantilever plate are brought into comparison, which shows that the constrained damping structure can effectively suppress the vibration.  相似文献   

14.
A free rectangular plate on the two-parameter elastic foundation   总被引:1,自引:1,他引:0  
This paper provides a rigorous solution of a free rectangular plate on the V.Z. Vlazov two-parameter elastic foundation by the method of superposition[1]. In this paper we derive basic solutions under the various boundary conditions. To superpose these basic solutions the most generally rigorous solution of a free rectangular plate on the two-parameter elastic foundation can be obtained. The solution strictly satisfies the differential equation of a plate on the two-parameter elastic model foundation, the boundary conditions of the free edges and the free corner conditions. Some numerical examples are presented The calculated results show that when the plane dimension of plate is given and the ratio between the laver depth and the plate thick is equal to 15, the two-parameter elastic model is near the Winkler’s. It shows that the Winkler model can be applied to the thinner layer.  相似文献   

15.
研究Winkler地基上正交各向异性矩形薄板弯曲方程所对应的Hamilton正则方程, 计算出其对边滑支条件下相应Hamilton算子的本征值和本征函数系, 证明该本征函数系的辛正交性以及在Cauchy主值意义下的完备性, 进而给出对边滑支边界条件下Hamilton正则方程的通解, 之后利用辛叠加方法求出Winkler地基上四边自由正交各向异性矩形薄板弯曲问题的解析解. 最后通过两个具体算例验证了所得解析解的正确性.  相似文献   

16.
Wang  Fang  Ding  Tao  Han  Xueli  Lv  Lei 《Transport in Porous Media》2020,133(2):293-312

The dynamic responses of an anisotropic multilayered poroelastic half-space to a point load or a fluid source are studied based on Stroh formalism and Fourier transforms. Taking the boundary conditions and the continuity of the materials into consideration, the three-dimensional Green’s functions of generalized concentrated forces (force and fluid source) applied at the free surface, interface and in the interior of a layer are derived in the Fourier transformed domain, respectively. The actual solutions in the frequency domain can further be acquired by inverting the Fourier transform. Finally, numerical examples are carried out to verify the presented theory and discuss the Green’s fields due to three cases of a concentrated force or a fluid source applied at three different locations for an anisotropic multilayered poroelastic half-space.

  相似文献   

17.
Large deformation of circular membrane under the concentrated force   总被引:1,自引:1,他引:0  
1 AxisymmetryLargeDeformationofCircularMembraneTheproblemofaxisymmetrylargedeformationofcircularmembraneisonewithpracticalsignificance.Hencky (1 91 5) [1]gaveasolutionofpowerseriesundertheuniformforce ;Alekseev (1 951 ) [2 ]gaveananalyticsolutionofcircularmembraneundertheconcentratedforce ,whichisexactonlywhenν=1 3 .ChienWei_zangetal.(1 981 ) [3]gaveananalyticsolutionofthesymmetricalcircularmembraneundertheactionofuniformlydistributedloadsinitscentralportion .Asfortheresultsorotherauthor…  相似文献   

18.
A solution method is derived to determine the stress intensity factors for both an internal crack and an edge crack in an orthotropic substrate that is reinforced on its boundary by a finite-length orthotropic plate. The method utilizes the Green’s functions for a pair of dislocations and a concentrated force on the boundary while invoking the concept of superposition. Enforcing the traction-free boundary condition along the crack surfaces and the continuity of displacement gradients along the plate/substrate interface results in a coupled system of singular integral equations. An asymptotic analysis of the kernels in these equations for the region of the junction point between the plate corner and the substrate boundary reveals the strength of the singularity in the case of an edge crack. The numerical solution of the integral equations provides results for the stress intensity factors for both an internal crack and an edge crack perpendicular to the substrate boundary and aligned with one of the corners of the plate. The present results have been validated against previously published stress intensity factors for an internal crack and an edge crack in an isotropic substrate.  相似文献   

19.
In this paper, we present a non-local non-linear finite element formulation for the Timoshenko beam theory. The proposed formulation also takes into consideration the surface stress effects. Eringen׳s non-local differential model has been used to rewrite the non-local stress resultants in terms of non-local displacements. Geometric non-linearities are taken into account by using the Green–Lagrange strain tensor. A C0 beam element with three degrees of freedom has been developed. Numerical solutions are obtained by performing a non-linear analysis for bending and free vibration cases. Simply supported and clamped boundary conditions have been considered in the numerical examples. A parametric study has been performed to understand the effect of non-local parameter and surface stresses on deflection and vibration characteristics of the beam. The solutions are compared with the analytical solutions available in the literature. It has been shown that non-local effect does not exist in the nano-cantilever beam (Euler–Bernoulli beam) subjected to concentrated load at the end. However, there is a significant effect of non-local parameter on deflections for other load cases such as uniformly distributed load and sinusoidally distributed load (Cheng et al. (2015) [10]). In this work it has been shown that for a cantilever beam with concentrated load at free end, there is definitely a dependency on non-local parameter when Timoshenko beam theory is used. Also the effect of local and non-local boundary conditions has been demonstrated in this example. The example has also been worked out for other loading cases such as uniformly distributed force and sinusoidally varying force. The effect of the local or non-local boundary conditions on the end deflection in all these cases has also been brought out.  相似文献   

20.
A static, purely flexural mechanical analysis is presented for a Kirchhoff solid circular plate, deflected by a transverse central force, and bilaterally supported along two antipodal periphery arcs, the remaining part of the boundary being free. Two kinds of contact reactions are considered, namely the case of distributed reaction force alone, and the situation in which the distributed force is added to a distributed couple of properly selected profile. For both cases this plate problem is formulated in terms of an integral equation of the Prandtl type, coupled with two constraint conditions. The existence of solutions in an appropriate scaled weighted Sobolev space is discussed, and the behaviour of the solution at the endpoints of the support is exhibited. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号