首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of mono-, di-, and tetranuclear homo/heterometallic complexes of Ru(II) and Os(II) based on the bridging ligand dppz(11-11')dppz (where dppz = dipyrido[3,2-a:2',3'-c]phenazine) (BL) have been synthesized and characterized. This bridging ligand is a long rigid rod with only one rotational degree of freedom and provides complete conjugation between the chromophores. The complexes synthesized are of general formula [(bpy)(2)Ru-BL](2+), [(phen)(2)/(bpy)(2)M-BL-M(bpy)(2)/(phen)(2)](4+) (M = Ru(II) and Os(II)), [(bpy)(2)Ru-BL-Os(bpy)(2)](4+), and [((bpy)(2)Ru-BL)(3)M](8+). Detailed (1)H NMR studies of these complexes revealed that each chiral center does not influence its neighbor because of the long distance between the metal centers and the superimposed resonances of the diastereoisomers, which allowed the unambiguous assignment of the signals, particularly for homonuclear complexes. Concentration-dependent (1)H NMR studies show molecular aggregation of the mono- and dinuclear complexes in solution by pi-pi stacking. Electrospray mass spectrometry data are consistent with dimerization of mono- and dinuclear complexes in solution. Electrochemical studies show oxidations of Ru(II) and Os(II) in the potential ranges +1.38 to +1.40 and +0.92 to +1.01 V, respectively. The bridging ligand exhibits two one-electron reductions, and it appears that the added electrons are localized on the phenazene moieties of the spacer. All of these complexes show strong metal-to-ligand charge-transfer (MLCT) absorption and (3)MLCT luminescence at room temperature. Quantum yields have been calculated, and the emission lifetimes of all complexes have been measured by laser flash photolysis experiments. The luminescence intensity and lifetime data suggest that the emission due to the Ru center of the heteronuclear complexes is strongly quenched (>90%) compared to that of the corresponding model complexes. This quenching is attributed to intramolecular energy transfer from the Ru(II) center to the Os(II) center (k = (3-5) x 10(7) s(-1)) across the bridging ligand.  相似文献   

2.
Interactions with DNA by a family of ruthenium(II) complexes bearing the dppz (dppz = dipyridophenazine) ligand or its derivatives have been examined. The complexes include Ru(bpy)(2)(dppx)(2+) (dppx = 7,8-dimethyldipyridophenazine), Ru(bpy)(2)(dpq)(2+) (dpq = dipyridoquinoxaline), and Ru(bpy)(2)(dpqC)(2+) (dpqC = dipyrido-6,7,8,9-tetrahydrophenazine). Their ground and excited state oxidation/reduction potentials have been determined using cyclic voltammetry and fluorescence spectroscopy. An intercalative binding mode has been established on the basis of luminescence enhancements in the presence of DNA, excited state quenching, fluorescence polarization values, and enantioselectivity. Oxidative damage to DNA by these complexes using the flash/quench method has been examined. A direct correlation between the amount of guanine oxidation obtained via DNA charge transport and the strength of intercalative binding was observed. Oxidative damage to DNA through DNA-mediated charge transport was also compared directly for two DNA-tethered ruthenium complexes. One contains the dppz ligand that binds avidly by intercalation, and the other contains only bpy ligands, that, while bound covalently, can only associate with the base pairs through groove binding. Long range oxidative damage was observed only with the tethered, intercalating complex. These results, taken together, all support the importance of close association and intercalation for DNA-mediated charge transport. Electronic access to the DNA base pairs, provided by intercalation of the oxidant, is a prerequisite for efficient charge transport through the DNA pi-stack.  相似文献   

3.
多吡啶钌(Ⅱ)配合物化学发光性质研究   总被引:3,自引:0,他引:3  
韩鹤友  何治柯  曾云鹗 《化学学报》2001,59(9):1513-1518
详细研究了Ru(bpy)3^2+,Ru(bpy)2(dppx)^2+,Ru(bpy)2(dppz)^2+,Ru(phen)3^2+,Ru(phen)2(dppx)^2+和Ru(phen)2(dppz)^2+六个多吡啶钌(Ⅱ)配合物的化学发光性质,筛选出Ru(bpy)3^2+和Ru(phen)3^2+两种性能优良的化学发光试剂;并探讨了它们发光的可能机理和影响因素,为钌(Ⅱ)配合物在化学发光分析中的应用提供了可供参考的理论依据。  相似文献   

4.
To explore the binding properties of [Ru(phen)(2)dppz](2+) complex (phen = 1,10-phenanthroline, dppz = dipyrido[3,2-a:2',3'-c]phenazine) in a sequence-specific manner in DNA duplex, it was tethered through the dppz ligand to a central position as well as both at the 3'- and 5'-ends of oligodeoxyribonucleotide (ODN). The middle [Ru(phen)(2)dppz](2+)-ODN tethered was resolved and isolated as four pure diastereomers, while the 3'- or 5'-[Ru(phen)(2)dppz](2+)-ODNs were inseparable on RP-HPLC. Thermal stability of the (Ru(2+)-ODN).DNA duplexes is found to increase considerably (DeltaT(m) = 12.8-23.4 degrees C), depending upon the site of the covalent attachment of the tethered [Ru(phen)(2)dppz](2+) complex, or the chirality of the [Ru(phen)(2)dppz](2+)-linker tethered at the middle of the ODN, compared to the unlabeled counterpart. Gross differences in CD between the [Ru(phen)(2)dppz](2+)-tethered and the native DNA duplexes showed that the global duplex conformation of the former has considerably altered from the B-type, but is still recognized by DNase I. The thermal melting studies, CD measurements, as well as DNase I digestion data, are interpreted as a result of intercalation of the dppz moiety, which is realized by threading of the Ru(phen)(2) complex part through the DNA duplex core. DNase I footprinting with four diastereomerically pure middle ([Ru(phen)(2)dppz](2+)-ODN).DNA duplexes furthermore showed that the tethered [Ru(phen)(2)dppz](2+)-linker chirality dictates the stereochemical accessibility of various phosphodiester moieties (around the intercalation site) toward the cleavage reaction by the enzyme. The diastereomerically pure ruthenium-modified duplexes, with the well-defined pi-stack, will be useful to explore stereochemistry-dependent energy- and electron-transfer chemistry to understand oxidative damage to the DNA double helix as well as the long-range energy- and electron-transfer processes with DNA as a reactant.  相似文献   

5.
A series of ruthenium(II) complexes possessing ligands with an extended pi system were synthesized and characterized. The complexes are derived from [Ru(bpy)3](2+) (1, bpy = 2,2'-bipyridine) and include [Ru(bpy)2(tpphz)](2+) (2, tpphz = tetrapyrido[3,2-a:2',3'-c:3',2'-h:2',3'-j]phenazine), [Ru(bpy)2(dppx)](2+) (3, dppx = 7,8-dimethyldipyrido[3,2-a:2',3'-c]phenazine), [Ru(bpy)2(dppm2)](2+) (4, dppm2 = 6-methyldipyrido[3,2-a:2',3'-c]phenazine), and [Ru(bpy)2(dppp2)](2+) (5, dppp2 = pyrido[2',3':5,6]pyrazino[2,3-f][1,10]phenanthroline). The excited-state properties of these complexes, including their DNA "light-switch" behavior, were compared to those of [Ru(bpy)2(dppz)](2+) (6, dppz = dipyrido[3,2-a:2',3'-c]phenazine). Whereas 2, 3, and 4 can be classified as DNA light-switch complexes, 5 exhibits negligible luminescence enhancement in the presence of DNA. Because relative viscosity experiments show that 2-6 bind to DNA by intercalation, their electronic absorption and emission spectra, electrochemistry, and temperature dependence of the luminescence were used to explain the observed differences. The small energy gap between the lowest-lying dark excited state and the bright state in 2-4 and 6 is related to the ability of these complexes to exhibit DNA light-switch behavior, whereas the large energy gap in 5 precludes the emission enhancement in the presence of DNA. The effect of the energy gap among low-lying states on the photophysical properties of 1-6 is discussed. In addition, DFT and TD-DFT calculations support the conclusions from the experiments.  相似文献   

6.
Chirality of metal complexes M(phen)3(n+) (M = Ru(II), Rh(III), Fe(II), Co(II), and Zn(II), and phen = 1,10-phenanthroline) is recognized by heptakis(6-carboxymethylthio-6-deoxy)-beta-cyclodextrin heptaanion (per-CO2(-)-beta-CD) and hexakis(2,3,6-tri-O-methyl)-alpha-cyclodextrin (TMe-alpha-CD) in D2O. The binding constant (K) for the Delta-Ru(phen)3(2+) complex of per-CO2(-)-beta-CD (K = 1250 M(-1)) in 0.067 M phosphate buffer at pD 7.0 is approximately 2 times larger than that for the Lambda-isomer (590 M(-1)). Definite effects of inorganic salts on stability of the complexes indicate a large contribution of Coulomb interactions to complexation. The fact that hydrophilic Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) does not form a complex with per-CO2(-)-beta-CD suggests the importance of inclusion of the guest molecule into the host cavity for forming a stable ion-association complex. The positive entropy change for complexation of Ru(phen)3(2+) with per-CO2(-)-beta-CD shows that dehydration from both the host and the guest occurs upon complexation. Similar results were obtained with trivalent Rh(phen)3(3+) cation. Pfeiffer effects were observed in complexation of racemic Fe(phen)3(2+), Co(phen)3(2+), and Zn(phen)3(2+) with per-CO2(-)-beta-CD with enriched Delta-isomers. Native cyclodextrins such as alpha-, beta-, and gamma-cyclodextrins as well as heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin do not interact with Ru(bpy)3(2+). However, hexakis(2,3,6-tri-O-methyl)-alpha-cyclodextrin (TMe-alpha-CD) interacts with Ru(phen)3(2+) and Ru(bpy)3(2+) and discriminates between the enantiomers of these metal complexes. The K values for the Delta- and Lambda-Ru(phen)3(2+) ions are 54 and 108 M(-1), respectively. Complexation of the Delta- and Lambda-isomers of Ru(phen)3(2+) with TMe-alpha-CD is accompanied by negative entropy changes, suggesting that cationic Ru(phen)3(2+) is shallowly included into the cavity of the neutral host through van der Waals interactions. The Delta-enantiomer, having a right-handed helix configuration, fits the primary OH group side of per-CO2(-)-beta-CD (SCH2CO2(-) side) well, while the Lambda-enantiomer, having a left-handed helix configuration, is preferably bound to the secondary OH group side of TMe-alpha-CD. The asymmetrically twisted shape of a host cavity seems to be the origin of chiral recognition by cyclodextrin.  相似文献   

7.
The interaction with DNA of the platinum(II) square planar complexes [Pt(N-N)(py)(2)](2+) (N-N = 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), dipyrido[3,2-a:2',3'-c]phenazine (dppz), benzodipyrido[b:3,2-h:2'3'-f]phenazine (bdppz)) has been investigated by means of absorption, circular and linear dichroism spectroscopy, DNA melting, and viscosity. In the presence of excess [DNA] all the complexes intercalate to the double helix. For those with the most extended phenanthrolines the binding mode depends on the [DNA]/[complex] ratio (q); at low q values the substances bind externally to DNA probably self-aggregating along the double helix. When the DNA concentration is large enough, the aggregate breaks up and the complex intercalates within the nucleobases. The complexes self-aggregate, without added DNA, in the presence of a large salt concentration.  相似文献   

8.
The feasibility of devising a solid support mediated approach to multimodal Ru(II)-peptide nucleic acid (PNA) oligomers is explored. Three Ru(II)-PNA-like monomers, [Ru(bpy)(2)(Cpp-L-PNA-OH)](2+) (M1), [Ru(phen)(2)(Cpp-L-PNA-OH)](2+) (M2), and [Ru(dppz)(2)(Cpp-L-PNA-OH)](2+) (M3) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, dppz = dipyrido[3,2-a:2',3'-c]phenazine, Cpp-L-PNA-OH = [2-(N-9-fluorenylmethoxycarbonyl)aminoethyl]-N-[6-(2-(pyridin-2yl)pyrimidine-4-carboxamido)hexanoyl]-glycine), have been synthesized as building blocks for Ru(II)-PNA oligomers and characterized by IR and (1)H NMR spectroscopy, mass spectrometry, electrochemistry and elemental analysis. As a proof of principle, M1 was incorporated on the solid phase within the PNA sequences H-g-c-a-a-t-a-a-a-a-Lys-NH(2) (PNA1) and H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-lys-NH(2) (PNA4) to give PNA2 (H-g-c-a-a-t-a-a-a-a-M1-lys-NH(2)) and PNA3 (H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-M1-lys-NH(2)), respectively. The two Ru(II)-PNA oligomers, PNA2 and PNA3, displayed a metal to ligand charge transfer (MLCT) transition band centered around 445 nm and an emission maximum at about 680 nm following 450 nm excitation in aqueous solutions (10 mM PBS, pH 7.4). The absorption and emission response of the duplexes formed with the cDNA strand (DNA: 5'-T-T-T-T-T-T-T-A-T-T-G-C-T-T-T-3') showed no major variations, suggesting that the electronic properties of the Ru(II) complexes are largely unaffected by hybridization. The thermal stability of the PNA·DNA duplexes, as evaluated from UV melting experiments, is enhanced compared to the corresponding nonmetalated duplexes. The melting temperature (T(m)) was almost 8 °C higher for PNA2·DNA duplex, and 4 °C for PNA3·DNA duplex, with the stabilization attributed to the electrostatic interaction between the cationic residues (Ru(II) unit and positively charged lysine/arginine) and the polyanionic DNA backbone. In presence of tripropylamine (TPA) as co-reactant, PNA2, PNA3, PNA2·DNA and PNA3·DNA displayed strong electrochemiluminescence (ECL) signals even at submicromolar concentrations. Importantly, the combination of spectrochemical, thermal and ECL properties possessed by the Ru(II)-PNA sequences offer an elegant approach for the design of highly sensitive multimodal biosensing tools.  相似文献   

9.
A tris(heteroleptic) phenanthrenequinone diimine (phi) complex of Ir(III), Ir(bpy)(phen)(phi)(3+), was synthesized through the stepwise introduction of three different bidentate ligands, and the Lambda- and Delta-enantiomers were resolved and characterized by CD spectroscopy. Like other phi complexes, this tris(heteroleptic) iridium complex binds avidly to DNA by intercalation. Electrochemical studies show that Ir(bpy)(phen)(phi)(3+) undergoes a reversible one-electron reduction at E(0) = -0.025 V in 0.1 M TBAH/DMF (versus Ag/AgCl), and spectroelectrochemical studies indicate that this reduction is centered on the phi ligand. The EPR spectrum of electrochemically generated Ir(bpy)(phen)(phi)(2+) is consistent with a phi-based radical. The electrochemistry of Ir(bpy)(phen)(phi)(3+) was also probed at a DNA-modified electrode, where a DNA binding affinity of K = 1.1 x 10(6) M(-1) was measured. In contrast to Ir(bpy)(phen)(phi)(3+) free in solution, the complex bound to DNA undergoes a concerted two-electron reduction, to form a diradical species. On the basis of UV-visible and EPR spectroscopies, it is found that disproportionation of electrochemically generated Ir(bpy)(phen)(phi)(2+) occurs upon DNA binding. These results underscore the rich redox chemistry associated with metallointercalators bound to DNA.  相似文献   

10.
The quenching of the luminescence of [Ru(phen)(2)dppz](2+) by structural homologue [Ru(phendione)(2)dppz](2+), when both complexes are bound to DNA, has been studied for all four combinations of Delta and Lambda enantiomers. Flow linear dichroism spectroscopy (LD) indicates similar binding geometries for all the four compounds, with the dppz ligand fully intercalated between the DNA base pairs. A difference in the LD spectrum observed for the lowest-energy MLCT transition suggests that a transition, potentially related to the final localization of the excited electron to the dppz ligand in [Ru(phen)(2)dppz](2+), is overlaid by an orthogonally polarized transition in [Ru(phendione)(2)dppz](2+). This would be consistent with a low-lying LUMO of the phendione moiety of [Ru(phendione)(2)dppz](2+) that can accept the excited electron from [Ru(phen)(2)dppz](2+), thereby quenching the emission of the latter. The lifetime of excited Delta-[Ru(phen)(2)dppz](2+) is decreased moderately, from 664 to 427 ns, when bound simultaneously with the phendione complex to DNA. The 108 ns lifetime of opposite enantiomer, Lambda-[Ru(phen)(2)dppz](2+), is only shortened to 94 ns. These results are consistent with an average rate constant for electron transfer of approximately 1.10(6) s(-1) between the phenanthroline- and phendione-ruthenium complexes. At binding ratios close to saturation of DNA, the total emission of the two enantiomers is lowered equally much, but for the Lambda enantiomer, this is not paralleled by a decrease in luminescence lifetime. A binding isotherm simulation based on a generalized McGhee-von Hippel approach shows that the Delta enantiomer binds approximately 3 times stronger to DNA both for [Ru(phendione)(2)dppz](2+) and [Ru(phen)(2)dppz](2+). This explains the similar decrease in total emission, without the parallel decrease in lifetime for the Lambda enantiomer. The simulation also does not indicate any significant binding cooperativity, in contrast to the case when Delta-[Rh(phi)(2)bipy](3+) is used as quencher. The very slow electron transfer from [Ru(phen)(2)dppz](2+) to [Ru(phendione)(2)dppz](2+), compared to the case when [Rh(phi)(2)phen](3+) is the acceptor, can be explained by a much smaller driving free-energy difference.  相似文献   

11.
The spectroscopic, electronic, and DNA-binding characteristics of two novel ruthenium complexes based on the dialkynyl ligands 2,3-bis(phenylethynyl)-1,4,8,9-tetraaza-triphenylene (bptt, 1) and 2,3-bis(4-tert-butyl-phenylethynyl)-1,4,8,9-tetraaza-triphenylene (tbptt, 2) have been investigated. Electronic structure calculations of bptt reveal that the frontier molecular orbitals are localized on the pyrazine-dialkynyl portion of the free ligand, a property that is reflected in a red shift of the lowest energy electronic transition (1: λ(max) = 393 nm) upon substitution at the terminal phenyl groups (2: λ(max) = 398 nm). Upon coordination to ruthenium, the low-energy ligand-centered transitions of 1 and 2 are retained, and metal-to-ligand charge transfer transitions (MLCT) centered at λ(max) = 450 nm are observed for [Ru(phen)(2)bptt](2+)(3) and [Ru(phen)(2)tbptt](2+)(4). The photophysical characteristics of 3 and 4 in ethanol closely parallel those observed for [Ru(bpy)(3)](2+) and [Ru(phen)(3)](2+), indicating that the MLCT excited state is primarily localized within the [Ru(phen)(3)](2+) manifold of 3 and 4, and is only sparingly affected by the extended conjugation of the bptt framework. In an aqueous environment, 3 and 4 possess notably small luminescence quantum yields (3: ?(H(2)O) = 0.005, 4: ?(H(2)O) = 0.011) and biexponential decay kinetics (3: τ(1) = 40 ns, τ(2) = 230 ns; 4: τ(1) ~ 26 ns, τ(2) = 150 ns). Addition of CT-DNA to an aqueous solution of 3 causes a significant increase in the luminescence quantum yield (?(DNA) = 0.045), while the quantum yield of 4 is relatively unaffected (?(DNA) = 0.013). The differential behavior demonstrates that tert-butyl substitution on the terminal phenyl groups inhibits the ability of 4 to intercalate with DNA. Such changes in intrinsic luminescence demonstrate that 3 binds to DNA via intercalation (K(b) = 3.3 × 10(4) M(-1)). The origin of this light switch behavior involves two competing (3)MLCT states similar to that of the extensively studied light switch molecule [Ru(phen)(2)dppz](2+). The solvent- and temperature-dependence of the luminescence of 3 reveal that the extended ligand aromaticity lowers the energy of the (3)ππ* excited state into competition with the emitting (3)MLCT state. Interconversion between these two states plays a significant role in the observed photophysics and is responsible for the dual emission in aqueous environments.  相似文献   

12.
Transition metal complexes possessing the intercalating dppz ligand (dppz = dipyrido[3,2-a:2',3'-c]phenazine) typically bind ds-DNA through intercalation (K(b) approximately 10(5)-10(6) M(-1)), and DNA photocleavage by these complexes with visible light proceeds through the generation of a reactive oxygen species. The DNA binding and photocleavage by [Rh(2)(mu-O(2)CCH(3))(2)(eta(1)-O(2)CCH(3))(CH(3)OH)(dppz)](+) (2) is reported and compared to that of Rh(2)(mu-O(2)CCH(3))(4) (1). Spectral changes and an increase in viscosity provide evidence for the intercalation of 2 to double stranded DNA with K(b) = 1.8 x 10(5) M(-1). DNA photocleavage by 2 is observed upon irradiation with lambda(irr) > 395 nm both in air and deoxygenated solution. DNA photocleavage is not observed for 1 or free dppz ligand under these irradiation conditions. The coupling of a single dppz ligand to a dirhodium(II/II) bimetallic core in 2 provides a means to access oxygen-independent DNA photocleavage with visible light.  相似文献   

13.
The synthesis, spectral characterization, and electrochemical properties of [Ru(phen)2(qdppz)]2+, which incorporates a quinone-fused dipyridophenazine ligand (naphtho[2,3-a]dipyrido[3,2-h:2',3'-f]phenazine-5,18-dione, qdppz), are described in detail. Chemical or electrochemical reduction of [Ru(phen)2(qdppz)]2+ leads to the generation of [Ru(phen)2(hqdppz)](2+)--a complex containing the hydroquinone form (hqdppz = 5,18-dihydroxynaphtho[2,3-a]-dipyrido[3,2-h:2',3'-f]phenazine) of qdppz. Absorption and viscometric titration, thermal denaturation, topoisomerase assay, and differential-pulse voltammetric studies reveal that [Ru(phen)2(qdppz)]2+ is an avid binder of calf-thymus DNA due to a strong intercalation by the ruthenium-bound qdppz, while [Ru(phen)2(hqdppz)]2+ binds to DNA less strongly than the parent "quinone"-containing complex. DNA-photocleavage efficiencies of these complexes also follow a similar trend in that the MLCT-excited state of [Ru(phen)2(qdppz)]2+ is more effective than that of [Ru(phen)2(hqdppz)]2+ in cleaving the supercoiled plasmid pBR 322 DNA (lambda exc = 440 +/- 5 nm), as revealed by the results of agarose gel electrophoresis experiments. The photochemical behaviors of both the quinone- and hydroquinone-appended ruthenium(II) complexes in the presence of DNA not only provide valuable insights into their modes of binding with the duplex but also lead to detailed investigations of their luminescence properties in nonaqueous, aqueous, and aqueous micellar media. On the basis of the results obtained, (i) a photoinduced electron transfer from the MLCT state to the quinone acceptor in Ru(phen)2(qdppz)]2+ and (ii) quenching of the excited states due to proton transfer from water to the dipyridophenazine ligand in both complexes are invoked to rationalize the apparent lack of emission of these redox-related complexes in the DNA medium.  相似文献   

14.
Two mixed ligand complexes of ruthenium(ii) [Ru(bzimpy)(bpy)(OH(2))](2+) (1) and [Ru(bzimpy)(phen)(OH(2))](2+) (2) have been synthesized and characterized by FAB mass, (1)H NMR, cyclic voltammetry and spectroelectrochemical measurements. Controlled potential electrolysis of these complexes results in the conversion of ruthenium(ii) to ruthenium(iii) at 0.6 V and ruthenium(iii) to ruthenium(iv) at 0.8 V vs. SCE. The binding constant of these complexes with DNA has been determined electrochemically and found to be (3.58 +/- 0.25) x 10(4) and (2.87+/- 0.2) x 10(4) M(-1). Viscosity measurements suggest that these complexes bind with DNA through intercalation. Such intercalative binding to DNA has been found to induce chirality to the two complexes. Electrochemically generated ruthenium(iv) species of these complexes have been found to bring about oxidative cleavage in DNA.  相似文献   

15.
Photophysical and photochemical properties of a series of mononuclear and binuclear ruthenium(II) complexes of phen (phen=1,10-phenanthroline), in the absence or in the presence of calf-thymus DNA have been investigated by steady-state as well as time-resolved methods. The complexes of this series are [Ru(x)(phen)(2x)(L)](2x+) (x=1 or 2) type, where L is a bpy (4,4'-dimethyl-2,2'-bypiridine, with x=1) or a bis-bpy covalently linked by flexible chains including either polymethylene groups or polyamine functions (with x=2). Upon addition of DNA, the most important increasing luminescence and change of emission maxima wavelength are observed for the bimetallic compounds having amine functions in their spacer. A biexponential decay in luminescence is found with emission lifetimes of the complexes upon binding to DNA. Moreover, these complexes induce efficient photocleavage of DNA by irradiation at 450 nm. This efficiency is particularly important when the binuclear complexes include amino groups. Topoisomerization experiments have pointed out a similarity between the DNA cleaving ability of these complexes and their intercalation into DNA. Scavenging experiments have shown that the oxidative species involved in DNA cleavage was mainly (1)O(2), via a type II mechanism.  相似文献   

16.
A new Ru(II) complex of [Ru(phen)(2)(Hcdpq)](ClO(4))(2) {phen = 1,10-phenanthroline, Hcdpq = 2-carboxyldipyrido[3,2-f:2',3'-h]quinoxaline} was synthesized and characterized. The spectrophotometric pH and calf thymus DNA (ct-DNA) titrations showed that the complex acted as a dual molecular light switch for pH and ct-DNA with emission enhancement factors of 17 and 26, respectively. It was shown to be capable of distinguishing ct-DNA from yeast RNA with this binding selectivity being superior to two well-known DNA molecular light switches of [Ru(bpy)(2)(dppz)](2+) {bpy =2,2'-bipyridine, and dppz = dipyrido-[3,2-a:2',3'-c]phenazine}and ethidium bromide. The complex bond to ct-DNA probably in groove mode with a binding constant of (4.67 ± 0.06) × 10(3) M(-1) in 5 mM Tris-HCl, 50 mM NaCl (pH = 7.10) buffer solution, as evidenced by UV-visible absorption and luminescence titrations, the dependence of DNA binding constants on NaCl concentrations, DNA competitive binding with ethidium bromide, and emission lifetime and viscosity measurements. To get insight into the light-switch mechanism, theoretical calculations were also performed by applying density functional theory (DFT) and time-dependent DFT.  相似文献   

17.
DNA-binding properties of a number of ruthenium complexes with different polypyridine ligands are reported. The new polypyridine ligand BFIP (=2-benzo[b] furan-2-yl-1H-imidazo[4,5-f][1,10]phenanthroline) and its ruthenium complexes [Ru(bpy)2BFIP]2+ (bpy = 2,2′-bipyridine), [Ru(dmb)2BFIP]2+ (dmb = 4,4′-dimethyl-2,2′-bipyridine), and [Ru(phen)2BFIP]2+ (phen = 1,10-phenanthroline) have been synthesized and characterized by elemental analysis, mass spectra, IR, UV-Vis, 1H- and 13C-NMR, and cyclic voltammetry. The DNA binding of these complexes to calf-thymus DNA (CT-DNA) was investigated by spectrophotometric, fluorescence, and viscosity measurements. The results suggest that ruthenium(II) complexes bind to CT-DNA through intercalation. Photocleavage of pBR 322 DNA by these complexes was also studied, and [Ru(phen)2BFIP]2+ was found to be a much better photocleavage agent than the other two complexes.  相似文献   

18.
Rüba E  Hart JR  Barton JK 《Inorganic chemistry》2004,43(15):4570-4578
Here we report the synthesis of luminescent ruthenium complexes that bind DNA base pair mismatches. [Ru(bpy)2(tpqp)]Cl2 (tpqp = 7,8,13,14-tetrahydro-6-phenylquino[8,7-k][1,8]phenanthroline), [Ru(bpy)2(pqp)]Cl2 (pqp = 6-phenylquino[8,7-k][1,8]phenanthroline), and [Ru(bpy)2(tactp)]Cl2 [tactp = 4,5,9,18-tetraazachryseno[9,10-b]triphenylene] have been synthesized, and their spectroscopic properties in the absence and presence of DNA have been examined. While [Ru(bpy)2(pqp)]2+ shows no detectable luminescence, [Ru(bpy)2(tpqp)]2+ is luminescent in the absence and presence of DNA with an excited-state lifetime of 10 ns and a quantum yield of 0.002. Although no increase in emission intensity is associated with binding to mismatch-containing DNA, luminescence quenching experiments and measurements of steady-state fluorescence polarization provide evidence for preferential binding to oligonucleotides containing a CC mismatch. Furthermore, by marking the site of binding through singlet oxygen sensitized damage, the complex has been shown to target a CC mismatch site directly with a specific binding affinity, Kb = 4 x 10(6) M(-1). [Ru(bpy)2(tactp)]2+, an analogue of [Ru(bpy)2(dppz)]2+ containing a bulky intercalating ligand, is luminescent in aqueous solution at micromolar concentrations and exhibits a 12-fold enhancement in luminescence in the presence of DNA. The complex, however, tends to aggregate in aqueous solution; we find a dimerization constant of 9.8 x 10(5) M(-1). Again, by singlet oxygen sensitization it is apparent that [Ru(bpy)2(tactp)]2+ binds preferentially to a CC mismatch; using a DNase I footprinting assay, a binding constant to a CC mismatch of 8 x 10(5) M(-1) is found. Hence results with these novel luminescent complexes support the concept of using a structurally demanding ligand to obtain selectivity in targeting single base mismatches in DNA. The challenge is coupling the differential binding we can obtain to differential luminescence.  相似文献   

19.
A series of mixed ligand ruthenium(II) complexes [Ru(pdto)(diimine)](ClO4)2/(PF6)2 1-3 and [Ru(bbdo)(diimine)](ClO4), 4-6, where pdto is 1,8-bis(pyrid-2-yl)-3,6-dithiooctane, bbdo is 1,8-bis(benzimidazol-2-yl)-3,6-dithiooctane and diimine is 1,10-phenanthroline (phen), dipyrido-[3,2-d:2',3'-f]-quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz), have been isolated and characterised by analytical and spectral methods. The complexes [Ru(pdto)(phen)](PF6)2 la, [Ru(pdto)(dpq)(Cl](PF6) 2a, [Ru(bbdo)(phen)](PF6)2 4a and [Ru(bbdo)(dpq)](ClO4)2 5 have been structurally characterized and their coordination geometries around ruthenium(II) are described as distorted octahedral. In la, 4a and 5 the two thioether sulfur and two py/bzim nitrogen atoms of the tetradentate pdto/bbdo ligand are folded around Ru(II) to give predominantly a "cis-alpha" configuration. (I)H NMR spectral data of the complexes support this configuration in solution. In [Ru(pdto)(dpq)Cl](PF6) 2a with a distorted octahedral coordination geometry, one of the two py nitrogens of pdto is not coordinated. The DNA binding constants (Kb: 2, 2.00 +/- 0.02 x 10(4) M(-1), s = 1.0; 3, 3.00 +/- 0.01 x 10(6) M(-1), s = 1.3) determined by absorption spectral titrations of the complexes with CT DNA reveal that 3 interacts with DNA more tightly than 2 through partial intercalation of the extended planar ring of coordinated dppz with the DNA base stack. The DNA binding affinities of the complexes increase with increase in the number of planar aromatic rings in the co-ligand, and on replacing both the py moieties in pdto complexes (1-3) by bzim moieties to give bbdo complexes (4-6). Upon interaction with CT DNA the complexes 1, 2, 5 and 6 show a decrease in anodic current in the cyclic voltammograms. On the other hand, interestingly, 3 and 4 show an increase in anodic current suggesting their involvement in electrocatalytic guanine oxidation. Interestingly, of all the complexes, only 6 alters the superhelicity of DNA upon binding with supercoiled pBR322 DNA. The cytotoxicities of the dppz complexes 3 and 6, which avidly bind to DNA, have been examined by screening them against cell lines of different cancer origins. It is noteworthy that 6 exhibits selectivity with higher cytotoxicity against the melanoma cancer cell line (A375) than other cell lines, potency approximately twice that of cisplatin and toxicity to normal cells 3 and 90 times less than cisplatin and adriamycin respectively.  相似文献   

20.
DNA binding and photocleavage characteristics of a series of mixed-ligand complexes of the type [M(phen)2LL]n+ (where M = Co(III), Ni(II) or Ru(II), LL = 1,10-phenanthroline (phen), phenanthroline-dione (phen-dione) or dipyridophenazine (dppz) andn = 3 or 2) have been investigated in detail. Various physico-chemical and biochemical techniques including UV/Visible, fluorescence and viscometric titration, thermal denaturation, and differential pulse voltammetry have been employed to probe the details of DNA binding by these complexes; intrinsic binding constants (K b) have been estimated under a similar set of experimental conditions. Analysis of the results suggests that intercalative ability of the coordinated ligands varies as dppz>phen>phen-dione in this series of complexes. While the Co(II) and Ru(II) complexes investigated in this study effect photocleavage of the supercoiled pBR 322 DNA, the corresponding Ni(II) complexes are found to be inactive under similar experimental conditions. Results of detailed investigations carried out inquiring into the mechanistic aspects of DNA photocleavage by [Co(phen)2(dppz)]3+ have also been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号