首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A theoretical model has been proposed for describing the relaxation of misfit stresses in a spherically symmetric composite core-shell nanoparticle due to the generation and expansion of rectangular prismatic dislocation loops at the internal and external interfaces. The critical conditions of the formation of these loops have been calculated for nanoparticles consisting of a relatively massive core and a thin shell. It has been shown that the generation of dislocation loops is possible when the misfit of the lattice parameters of the core and shell of the nanoparticle exceeds a critical value that depends on the nanoparticle radius, the shell thickness, the loop formation position, and the shape of loops. This condition holds for a loop in the shell when the shell thickness either lies in a specific range of small values or (for a larger misfit) is less than a critical value. For the generation of loops in the core, the shell thickness should exceed a critical value. The dislocation loops elongated along the core-shell interface are formed more readily. As the shell thickness increases at a fixed nanoparticle radius, the energetically more favorable generation of a dislocation loop occurs first from the free surface into the bulk of the shell, then from the interface into the shell, and finally from the interface into the core of the nanoparticle.  相似文献   

2.
The method of molecular dynamics is applied to the study of the effect of post-cascade shock waves generated in a solid irradiated by high-energy particles on the heterogeneous formation of dislocation loops in a simulated gold crystal containing a spherical nanovoid, which is subjected to shear deformation. The interaction between atoms is described with the use of a potential calculated by the embedded atom method. Shock waves are created by assigning a velocity exceeding the speed of sound in the simulated material to the boundary atoms of the computational cell. It is shown that two regions of increased mechanical stress are formed under shear deformation near the surface of a nanovoid, which are the sources of emerging partial dislocations. The main mechanism for the formation of dislocations is the displacement of a group of atoms towards the inner surface of the void, which does not contradict modern ideas about the heterogeneous formation of dislocations. It is shown that, when the values of shear stress are insufficient for the formation of dislocations, loop emission can be initiated by a post-cascade shock wave generated in the computational cell. As temperature increases, the number of nucleated dislocation loops increases, and, in addition, the formation of Lomer–Cottrell dislocations is observed, which is attributed to the additional tangential stresses created by the unloading wave. In this case, the formation of a stable dislocation loop in which the linear tension is balanced by the Peach–Koehler force due to external stress requires that the shock wave front affect the regions of increased stress near the void surface while propagating through the simulated crystal.  相似文献   

3.
A new mechanism for relaxation of misfit stresses in composite nanowires (quantum wires) is suggested and theoretically examined, namely the formation of misfit dislocation loops. The stress field of a prismatic dislocation loop in a cylinder (nanowire) is calculated. The parameters of two-phase composite nanowires at which the formation of misfit dislocation loops is energetically favourable are estimated. The effect of stress fields of dislocation loops on the formation of compositionally modulated nanowires is discussed.  相似文献   

4.
Elastic-energy relaxation in systems with nanoinclusions is considered. The relaxation is related to the formation of the following dislocation loops: a single misfit dislocation loop or a group of such loops on the matrix-nanoinclusion interface and/or a satellite dislocation loop near the inclusion. The critical inclusion sizes beginning from which misfit dislocation loops and satellite dislocation loops can nucleate are determined for various models of relaxation processes. The dependences of the satellite-dislocation-loop diameter on the inclusion size are calculated and compared with experimental data.  相似文献   

5.
第伍旻杰  胡晓棉 《物理学报》2015,64(17):170201-170201
本文利用分子动力学模拟方法研究了含纳米孔洞金属铝在[110]晶向高应变率单轴压缩下弹塑性变形的微观过程. 对比单孔洞和完整单晶的模型, 讨论了多孔金属的应力应变关系及其位错发展规律. 研究结果表明, 对于多孔模型的位错积累过程, 位错密度随应变的增加可大致分为两个线性阶段. 由同一个孔洞生成的位错在相互靠近过程中, 其滑移速度越来越小; 随着位错继续滑移, 源自不同孔洞的位错之间开始交叉相互作用导致应变硬化. 达到流变峰应力之后又由于位错密度增殖速率升高发生软化. 当应变增加到11.8%时, 所有孔洞几乎完全坍缩, 并观察到在此过程中有棱位错生成.  相似文献   

6.
Abstract

Radiation defect accumulation in 60Co γ-ray-irradiated n-type Si single crystals (ρ=150ωcm) with various densities of dislocations (ND = 1 × 104 to 1 × 107 cm ?2) introduced at plastic deformation was studied. The temperature dependences of the Hall coefficient were measured. The probabilities of interaction of vacancies with oxygen, phosphorus atoms, and dislocation line elements were determined. It has been established that with the increase of ND they can increase at the expense of complication of dislocation structure, decrease during formation of impurity atmosphere near dislocations and compensation of deformation fields, and they do not change if complex formation of vacancies with impurities occurs far from dislocations. Kinetics of A- and E-centre accumulation in the crystals containing dislocations with different impurity atmosphere was described.  相似文献   

7.
Body-centered-cubic iron develops an elastic instability, driven by spin fluctuations, near the alpha-gamma phase transition temperature T(c) = 912 degrees C that is associated with the dramatic reduction of the shear stiffness constant c' (c(11)-c(12))/2 near T(c). This reduction of c' has a profound effect on the temperature dependence of the anisotropic elastic self-energies of dislocations in iron. It also affects the relative stability of the a[100] and a/2[111] prismatic edge dislocation loops formed during irradiation. The difference between the anisotropic elastic free energies provides the fundamental explanation for the observed dominant occurrence of the a[100], as opposed to the a/2[111], Burgers vector configurations of prismatic dislocation loops in iron and iron-based alloys at high temperatures.  相似文献   

8.
The elastic behavior of a spherical inclusion with a uniaxial dilatation is considered. As an example, the experimental data on stressed nanoclusters in doped semiconductors (As-Sb clusters in GaAs) are presented. The fields of displacements, elastic strains, and stresses are determined for spherical inclusions with uniaxial dilatation, and the specific features of these fields are revealed. The elastic energy of a uniaxial spheroid is calculated and compared with that for a triaxial spheroid. The relaxation mechanisms for the elastic field of the inclusion associated with the formation of prismatic dislocation loops are considered.  相似文献   

9.
The conditions for the formation of fragments with medium-angle boundaries in shear bands are analyzed using computer simulation. It is shown that the main condition for the transformation of weakly disoriented dislocation structures into a fragmented structure is the suppression of active plastic deformation in a subgrain by the elastic fields of disclinations appearing at subgrain boundary junctions as a result of mismatch of plastic rotations in individual subgrain boundaries. Under these conditions, during continued straining in the surrounding matrix, such a subgrain behaves as an undeformed inclusion and experiences a crystallographic rotation. The disorientation of the subgrain continuously increases, thereby transforming initial small-angle dislocation boundaries into medium-angle and (in the limit) large-angle boundaries.  相似文献   

10.
The dislocation loop size distribution in semiconductors CdTe, ZnTe, ZnSe, ZnS, CdS, GaAs, Si, and Ge has been studied using transmission electron microscopy. The experimental results have been compared with theoretical computations of the critical radii of the transition of partial dislocation loops to full ones with allowance for the dislocation loop formation energy and stacking fault energy of the materials. It has been shown that the critical radius depends on the stacking fault energy and is an important characteristic in the analysis of the defect formation processes in semiconductors.  相似文献   

11.
A theoretical model is proposed for the homogeneous nucleation of glide dislocation loops in nanocrystalline ceramics under deformation at low and high temperatures. The nucleation of a dislocation loop in a crystalline grain is considered an ideal nanoscopic shear whose magnitude (the Burgers vector of the dislocation) increases gradually as the loop is nucleating. The characteristics of the homogeneous nucleation of glide dislocation loops in nanocrystalline ceramics based on cubic silicon carbide are calculated. It is shown that, in general, the homogeneous nucleation of a dislocation loop in nanocrystalline ceramics at high temperatures proceeds in two stages, namely, the athermal nucleation of a loop of a “noncrystallographic” partial dislocation and its thermally activated transformation into an ordinary partial lattice dislocation loop.  相似文献   

12.
A model of coherent and incoherent oxygen-containing precipitates formed in an anisotropic silicon crystal due to the decomposition of a supersaturated oxygen solid solution has been considered. The stresses acting inside and outside the precipitate have been determined in the framework of the classical Eshelby’s approach. A criterion has been proposed for the generation of the misfit dislocation and the onset of motion of the perfect interstitial dislocation loop lying in the precipitate plane. The proposed precipitate model and criterion have been used for determining the dependence of the precipitate radius that corresponds to the formation of the misfit dislocation and the onset of motion of the perfect interstitial dislocation loop when an external load is applied to the sample. The results obtained are compared with the available experimental data.  相似文献   

13.
The effect of an electric current on the band formation and the serrated deformation of planar specimens made of an aluminum–magnesium AlMg5 alloy and weakened by holes is experimentally studied. It is found that the concentration of elastic stress fields and the self-localized unstable plastic deformation field near a hole decreases the critical strain of appearance of the first stress drop and hinders the currentinduced suppression of band formation and the serrated Portevin–Le Chatelier deformation. These results are shown not to be related to the concentration of Joule heat near a hole.  相似文献   

14.
Theoretical model is suggested that describes the effects of the cooperative nanograin boundary sliding and stress-driven nanograin boundary migration (CNGBSM) process on the lattice dislocation emission from an elliptically blunt nanocrack tip in deformed nanocrystalline materials. Within the model, CNGBSM deformation near the tip of growing nanocrack carries plastic flow, produces two dipoles of disclination defects and creates high local stresses in nanocrystalline materials. By using the complex variable method, the complex form expression of dislocation force is derived, and critical stress intensity factors for the first lattice dislocation emission are obtained under mode I and mode II loading conditions, respectively. The combined effects of the geometric features and strengths of CNGBSM deformation, nanocrack blunting and length on critical SIFs for dislocation emission depend upon nanograin size and material parameters in a typical situation where nanocrack blunting and growth processes are controlled by dislocation emission from nanocrack tips. It is theoretically shown that the cooperative CNGBSM deformation and nanocrack blunting have great influence on dislocation emission from blunt nanocrack tip.  相似文献   

15.
Q.H. Fang  Y.W. Liu  P.H. Wen 《哲学杂志》2013,93(20):1585-1595
A theoretical model is proposed for elastic stress relaxation of a buried strained cylindrical inhomogeneity, which assumes the edge misfit dislocation dipole formation in the soft matrix at some distance from the interface. The critical radius of the inhomogeneity for the formation of the edge misfit dislocation dipole is given and the influence of various parameters on the critical radius is evaluated. The result indicates that the critical radius decreases with increasing misfit strain and core radius of the misfit dislocation. It is also found that, compared to the edge misfit dislocation dipole formation in the interface, the critical radius of the inhomogeneity decreases when the location of an edge misfit dislocation dipole formation is in the soft matrix at some distance from the interface.  相似文献   

16.
The critical conditions have been calculated for the generation of circular prismatic loops of misfit dislocations at the interfaces in spherically symmetric composite core-shell nanoparticles. It has been shown that the formation of these loops becomes energetically favorable if the misfit parameter exceeds a critical value, which is determined by the geometry of the system. The most preferred position of the dislocation loop is in the equatorial plane of the nanoparticle. For a given radius of the nanoparticle, there is a minimum value of the critical misfit parameter below which the generation of a misfit dislocation is energetically unfavorable for any ratio of the core and shell radii. For a misfit parameter exceeding the minimum critical value, there are two critical values of the reduced radius of the particle core in the interval between which the generation of a dislocation loop is energetically favorable. This interval increases with increasing misfit parameter for a fixed particle size and decreases with decreasing particle size for a fixed misfit parameter.  相似文献   

17.
Mechanoluminescence (ML) emission from coloured alkali halide crystals takes place during their elastic and plastic deformation. The ML emission during the elastic deformation occurs due to the mechanical interaction between dislocation segments and F-centres, and the ML emission during the plastic deformation takes place due to the mechanical interaction between the moving dislocations and F-centres. In the elastic region, the ML intensity increases linearly with the strain or deformation time, and in this case, the saturation region could not be observed because of the beginning of the plastic deformation before the start of the saturation in the ML intensity. In the plastic region, initially the ML intensity also increases linearly with the strain or deformation time, and later on, it attains a saturation value for large deformation. When the deformation is stopped, initially the ML intensity decreases at a fast rate; later on, it decreases at a slow rate. The decay time for the fast decrease of the ML intensity gives the relaxation time of dislocation segments or pinning time of the dislocations, and the decay time of the slow decrease of the ML intensity gives the diffusion time of holes in the crystals. The saturation value of the ML intensity increases linearly with the strain rate and also with the density of F-centres in the crystals. Initially, the saturation value of the ML intensity increases with increasing temperature, and for higher temperatures the ML intensity decreases with increasing temperature. Therefore, the ML intensity is optimum for a particular temperature of the crystals. From the ML measurements, the relaxation time of dislocation segments, pinning time of dislocations, diffusion time of holes and the energy gap between the bottom of the acceptor dislocation band and interacting F-centre level can be determined. Expressions derived for the ML induced by elastic and plastic deformation of coloured alkali halide crystals at fixed strain rates indicates that the ML intensity depends on the strain, strain rate, density of colour centres, size of crystals, temperature, luminescence efficiency, etc. A good agreement is found between the theoretical and experimental results.  相似文献   

18.
袁林  敬鹏  刘艳华  徐振海  单德彬  郭斌 《物理学报》2014,63(1):16201-016201
纳米尺度金属Ag以其独特的导电和导热性,广泛应用于微电子、光电子学、催化等领域,特别是在纳米微电极和纳米器件方面的应用.本文采用分子动力学方法模拟了不同晶粒尺寸下多晶银纳米线的拉伸变形行为,详细分析了晶粒尺寸对多晶银纳米线弹性模量、屈服强度、塑性变形机理的影响.发现当晶粒尺寸小于13.49 nm时,多晶Ag纳米线呈现软化现象,出现反Hall-Petch关系,此时的塑性变形机理主要以晶界滑移、晶粒转动为主,变形后期形成五重孪晶;当晶粒尺寸大于13.49 nm时,塑性变形以位错滑移为主,变形后期产生大量的孪晶组织.  相似文献   

19.
Shielding effect and emission criterion of a screw dislocation near an interfacial blunt crack are dealt with in this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex potentials and stress fields due to a screw dislocation located near the interfacial blunt crack. The stress intensity factor on the crack tips and the critical stress intensity factor for dislocation emission are also calculated. The influence of the orientation of the dislocation and the morphology of the blunt crack as well as the material elastic dissimilarity on the shielding effect and the emission criterion is discussed in detail. The results show that positive screw dislocations can reduce the stress intensity factor of the interfacial blunt crack tip (shielding effect). The shielding effect increases with the increase of the shear modulus of the lower half-plane, but it decreases with the increase of the dislocation azimuth angle. The critical loads at infinity for dislocation emission increases with the increase of emission angle and curvature radius of blunt crack tip, and the most probable angle for screw dislocation emission is zero. The present solutions contain previous results as special cases.  相似文献   

20.
Cyclic dislocation transformations are detected in the deformation macrolocalization zone during tension of a Zr-1% Nb alloy, and this cyclicity is accompanied by periodic relaxation of internal stresses as a result of the decomposition of sub-boundaries and dislocation redistribution. The oscillatory instability of deformation localization in the hardening-softening mode at the parabolic stage of plastic flow in zirconium alloys is found to be related to the cyclicity of dislocation transformations in the macrolocalization zone during its transformation into a neck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号