首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drug bioactivation leading to the formation of reactive species capable of covalent binding to proteins represents an important cause of drug‐induced toxicity. Reactive metabolite detection using in vitro microsomal incubations is a crucial step in assessing potential toxicity of pharmaceutical compounds. The most common method for screening the formation of these unstable, electrophilic species is by trapping them with glutathione (GSH) followed by liquid chromatography/mass spectrometry (LC/MS) analysis. The present work describes the use of a brominated analog of glutathione, N‐(2‐bromocarbobenzyloxy)‐GSH (GSH‐Br), for the in vitro screening of reactive metabolites by LC/MS. This novel trapping agent was tested with four drug compounds known to form reactive metabolites, acetaminophen, fipexide, trimethoprim and clozapine. In vitro rat microsomal incubations were performed with GSH and GSH‐Br for each drug with subsequent analysis by liquid chromatography/high‐resolution mass spectrometry on an electrospray time‐of‐flight (ESI‐TOF) instrument. A generic LC/MS method was used for data acquisition, followed by drug‐specific processing of accurate mass data based on mass defect filtering and isotope pattern matching. GSH and GSH‐Br incubations were compared to control samples using differential analysis (Mass Profiler) software to identify adducts formed via the formation of reactive metabolites. In all four cases, GSH‐Br yielded improved results, with a decreased false positive rate, increased sensitivity and new adducts being identified in contrast to GSH alone. The combination of using this novel trapping agent with powerful processing routines for filtering accurate mass data and differential analysis represents a very reliable method for the identification of reactive metabolites formed in microsomal incubations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The in vitro metabolism of the nootropic drug fipexide was studied using different liquid chromatography/mass spectrometry (LC/MS) techniques. This drug has been withdrawn from the market due to toxic effects. No previous reports have investigated the possible involvement of reactive metabolites in the toxicity of fipexide. The hydrolysis of this drug leads to the formation of two potentially toxic species, 3,4-methylenedioxybenzylpiperazine (MDBP) and 4-chlorophenoxyacetic acid (4-CPA). Here, we investigate the in vitro metabolism of fipexide in human, rat, mouse and dog, as well as of MDBP and 4-CPA in human and rat, while focusing on the formation of reactive metabolites. A combination of LC/MS analyses on a hybrid quadrupole-linear ion trap instrument and accurate mass data from QqTOF measurements was employed for the characterization of these metabolites. Microsomal metabolites of fipexide were MDBP, 4-CPA, fipexide N-oxide or hydroxyl, demethylenated fipexide and other minor ones, all of which were investigated by tandem mass spectrometry. Reactive metabolites were detected using several trapping procedures with small molecules such as glutathione, its ethyl ester derivative and N-acetylcysteine. The demethylenated metabolite, a catechol, formed its corresponding ortho-quinone, which readily reacts with these nucleophiles. MDBP was studied in a similar manner, due to its ability to form an analogous catechol. Because of its acidic nature, 4-CPA was assessed for possible acylglucuronide and acyl-CoA thioester metabolites, which could also be involved in bioactivation pathways. Several important metabolites were identified as potential mediators of toxicity via protein binding.  相似文献   

3.
CYP-mediated fast metabolism may lead to poor bioavailability, fast drug clearance and significant drug interaction. Thus, metabolic stability screening in human liver microsomes (HLM) followed by metabolic soft-spot identification (MSSID) is routinely conducted in drug discovery. Liver microsomal incubations of testing compounds with fixed single or multiple incubation time(s) and quantitative and qualitative analysis of metabolites using high-resolution mass spectrometry are routinely employed in MSSID assays. The major objective of this study was to develop and validate a simple, effective, and high-throughput assay for determining metabolic soft-spots of testing compounds in liver microsomes using a single variable incubation time and LC/UV/MS. Model compounds (verapamil, dextromethorphan, buspirone, mirtazapine, saquinavir, midazolam, amodiaquine) were incubated at 3 or 5 µM with HLM for a single variable incubation time between 1 and 60 min based on predetermined metabolic stability data. As a result, disappearances of the parents were around 20–40%, and only one or a few primary metabolites were generated as major metabolite(s) without notable formation of secondary metabolites. The unique metabolite profiles generated from the optimal incubation conditions enabled LC/UV to perform direct quantitative estimation for identifying major metabolites. Consequently, structural characterization by LC/MS focused on one or a few major primary metabolite(s) rather than many metabolites including secondary metabolites. Furthermore, generic data-dependent acquisition methods were utilized to enable Q-TOF and Qtrap to continuously record full MS and MS/MS spectral data of major metabolites for post-acquisition data-mining and interpretation. Results from analyzing metabolic soft-spots of the seven model compounds demonstrated that the novel MSSID assay can substantially simplify metabolic soft-spot identification and is well suited for high-throughput analysis in lead optimization.  相似文献   

4.
A liquid chromatography tandem mass spectrometry (LC/MS/MS) method has been developed for the fast routine analysis of selected CYP450 probe substrate metabolites in microsomal incubations, with no sample pretreatment. This has allowed fast and simple assessment of the potential effects which drug candidates may or may not have on the metabolism of specific CYP450 probe substrates, providing information which can then be used to rationalize in vivo interaction studies required in the clinic. This methodology takes advantage of fast gradient chromatography as a generic means of sample separation and analysis. It provides high throughput analysis compared to conventional gradient HPLC, with no significant loss in chromatographic performance. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
The metabolites formed via the major metabolic pathways of haloperidol in liver microsomes, N‐dealkylation and ring oxidation to the pyridinium species, were produced by electrochemical oxidation and characterized by ultra‐performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI‐MS). Liver microsomal incubations and electrochemical oxidation in the presence of potassium cyanide (KCN) resulted in two diastereomeric cyano adducts, proposed to be generated from trapping of the endocyclic iminium species of haloperidol. Electrochemical oxidation of haloperidol in the presence of KCN gave a third isomeric cyano adduct, resulting from trapping of the exocyclic iminium species of haloperidol. In the electrochemical experiments, addition of KCN almost completely blocked the formation of the major oxidation products, namely the N‐dealkylated products, the pyridinium species and a putative lactam. This major shift in product formation by electrochemical oxidation was not observed for the liver microsomal incubations where the N‐dealkylation and the pyridinium species were the major metabolites also in the presence of KCN. The previously not observed dihydropyridinium species of haloperidol was detected in the samples, both from electrochemical oxidation and the liver microsomal incubations, in the presence of KCN. The presence of the dihydropyridinium species and the absence of the corresponding cyano adduct lead to the speculation that an unstable cyano adduct was formed, but that cyanide was eliminated to regenerate the stable conjugated system. The formation of the exocyclic cyano adduct in the electrochemical experiments but not in the liver microsomal incubations suggests that the exocyclic iminium intermediate, obligatory in the electrochemically mediated N‐dealkylation, may not be formed in the P450‐catalyzed reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, an end-point-based fluorescence assay for soluble epoxide hydrolase (sEH) was transformed into an on-line continuous-flow format. The on-line biochemical detection system (BCD) was coupled on-line to liquid chromatography (LC) to allow mixture analysis. The on-line BCD was based on a flow system wherein sEH activity was detected by competition of analytes with the substrate hydrolysis. The reaction product was measured by fluorescence detection. In parallel to the BCD data, UV and MS data were obtained through post-column splitting of the LC effluent. The buffer system and reagent concentrations were optimized resulting in a stable on-line BCD with a good assay window and good sensitivity (S/N > 60). The potency of known sEH inhibitors (sEHis) obtained by LC–BCD correlates well with published values. The LC–BCD system was applied to test how oxidative microsomal metabolism affects the potency of three sEHis. After incubation with pig liver microsomes, several metabolites of sEHis were characterized by MS, while their individual potencies were measured by BCD. For all compounds tested, active metabolites were observed. The developed method allows for the first time the detection of sEHis in mixtures providing new opportunities in the development of drug candidates.  相似文献   

7.
The application of mass spectrometry in drug discovery, especially in drug metabolites, is very important. This present paper is at first focused on the elucidation of fragmentation patterns of the phenolic bisbenzyltetrahydroisoquinoline alkaloid, neferine, together with its analogues isoliensinine and liensinine with anti-HIV activities using electrospray ionization tandem mass spectrometry (ESI-MS/MS) and hydrogen/deuterium (H/D) exchange. All title compounds displayed major diagnostic fragments that formed by the cleavage of the C1'--C9' bond resulting in positive group CD, and the loss of 4-ethyl-1-phenol or 4-ethyl-1-methoxybenzene following rearrangements. Their ESI-MS/MS spectra also showed the relatively stable fragment ions formed by the elimination of H2O, CH3NH2, CH3OH, and CH3-N==CH2. Secondly, the metabolites of neferine from dog hepatic microsomal incubations were analyzed and characterized by high-performance liquid chromatography (HPLC) and data-dependent ESI-MS/MS. Based on fragmentation patterns and compared with their retention times in LC, molecular weights and ultraviolet (UV) absorbances with standard compounds, six metabolites were identified as isoliensinine, liensinine and four novel bisbenzyltetrahydroisoquinoline alkaloids named as 6-O-desmethylneferine, 2'-N-desmethylneferine, 2'-N-6-O-didesmethylneferine, and 6,13-O-didesmethylneferine. All metabolites were desmethyl or didesmethyl products of neferine. The possible metabolic pathways for neferine have been proposed. The results suggest that N-demethylation and O-demethylation are two important metabolic pathways of neferine in dog hepatic microsomal incubations. This is critical for screening and development of phenolic bisbenzyltetrahydroisoquinoline alkaloids with anti-HIV activities such as neferine and its analogues isoliensinine and liensinine.  相似文献   

8.
A generic method employing ultrafast liquid chromatography with tandem mass spectrometry (LC/MS/MS) was developed and employed for routine screening of drug candidates for inhibition of five major human cytochrome p450 (CYP) isozymes, CYP3A4, CYP2D6, CYP2C9, CYP2C19, and CYP1A2. The method utilized a monolithic silica rod column to allow fast flow rates to significantly reduce chromatographic run time. The major metabolites of six CYP-specific probe substrates for the five p450 isoforms were monitored and quantified to determine IC(50) values of five drug compounds against each p450 isozyme. Human liver microsomal incubation samples at each test compound concentration were combined and analyzed simultaneously by the LC/MS/MS method. Each pooled sample containing six substrates and an internal standard was separated and detected in only 24 seconds. The combination of ultrafast chromatography and sample pooling techniques has significantly increased sample throughput and shortened assay turnaround time, allowing a large number of compounds to be screened rapidly for potential p450 inhibitory activity, to aid in compound selection and optimization in drug discovery.  相似文献   

9.
The metabolic profile of BAL4815, an antifungal azole drug, was determined using in vitro rat hepatocyte incubations and subsequent analysis by capillary LC-qTof-MS and MS/MS including accurate mass determination. For the detection of the metabolites, a mixture of the drug and its deuterium-labelled analogue was used for incubations. Metabolic stability of BAL4815 was high in cultured rat hepatocytes. However, several low-abundant metabolites were detected by the use of capillary LC-qTof-MS and manual investigation of the data. The peak intensity of the most abundant metabolite was close to the limit of detection. Except for an apparent oxidation product, the masses of the other detected metabolites could not be assigned to a single and frequently occurring biotransformation. Accurate mass determination and possible elemental compositions suggested that metabolism occurred through a combination of glutathionylation and defluorination. This was verified using accurate mass MS/MS. The use of accurate mass measurements and the derived suggestions for the elemental compositions were essential to elucidate this atypical metabolic pathway. A mass accuracy better than 8 ppm could be achieved for most assigned MS and MS/MS signals with intensities less than 6 cps in the spectra.  相似文献   

10.
Rapid drug metabolite profiling can be achieved using fast chromatographic separation and fast mass spectrometric scanning without compromising the separation efficiency. Fast chromatographic separations of drug and its metabolites can be achieved by eluting from a short narrow-bore guard cartridge column (20 x 2 mm I.D., 3 microns BDS Hypersil C8) at flow-rate of 1.0 ml/min and with a gradient volume greater than 90 column volumes. The need for chromatographic separation is important for automated data dependent multiple-stage mass spectrometry (MSn) experimentation. The total analysis time of 8 min permits profiling of metabolites in a 96-well plate in 13 h. The narrow chromatographic peaks resulting from the high flow-rate require the use of a mass spectrometer capable of fast scan speed due to the need to perform multiple MS experiments within the same chromatographic analysis. A method has been developed for screening potentially biologically active in vitro microsomal metabolites by affinity binding with a receptor. After separation by centrifugal ultrafiltration, the bound ligands are released and characterized by LC-MS. In vitro microsomal metabolites of tamoxifen, raloxifene and adatanserin were screened for potential biological activity using this method. The in vitro metabolites of tamoxifen captured by the receptor include N-demethyltamoxifen and three species of hydroxytamoxifen; these data are consistent with those from a conventional binding study and bioassay. In addition, both hydroxyraloxifene and dihydroxyraloxifene are also recognized by the receptor. The specificity of the molecular recognition process is illustrated by the absence of binding with control microsomal incubate and with adatanserin and its metabolites. Therefore, active metabolites can be rapidly profiled by fast LC, automated MSn, and receptor binding. This information can be obtained quickly and can add value to the drug discovery process.  相似文献   

11.
Liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) is a widely utilized analytical tool for quantifying small molecules in complex biological matrices. In certain situations the mass-selection capabilities of the tandem mass spectrometer may be insufficient to discriminate between the analyte of interest and its metabolites, particularly those metabolites that are isobaric with the analyte. One scenario by which isobaric interference may occur is the metabolism of a chlorine- or bromine-containing small molecule to a metabolite with the concomitant loss of 2 Da. This report describes the detection and characterization of two distinct dehydrogenation [M-2] metabolites during LC/MS/MS quantification of a chlorinated small molecule in rat plasma samples derived from a toxicokinetic study. The potential isotope-related impact of these metabolites on quantification of the parent compound was assessed. Several alternate precursor ion and product ion combinations were evaluated and shown to minimize the quantitative impact of the interfering metabolites without having to rely on their stringent chromatographic resolution from the parent compound. These results indicate that when quantifying chlorine- or bromine-containing small molecules from in vivo samples or in vitro metabolic incubations: (1) efforts to detect potential dehydrogenation metabolites should be undertaken and (2) if such metabolites are detected, the judicious choice of alternate multiple-reaction monitoring (MRM) transitions can limit their impact on quantification of the parent molecule without the need for robust chromatographic resolution.  相似文献   

12.
LC coupled to single (LC–MS) and tandem (LC–MS/MS) mass spectrometry is recognized as the most powerful analytical tools for metabolic studies in drug discovery. In this article, we describe five cases illustrating the utility of screening xenobiotic metabolites in routine analysis of forensic samples using LC–MS/MS. Analyses were performed using a previously published LC–MS/MS general unknown screening (GUS) procedure developed using a hybrid linear IT–tandem mass spectrometer. In each of the cases presented, the presence of metabolites of xenobiotics was suspected after analyzing urine samples. In two cases, the parent drug was also detected and the metabolites were merely useful to confirm drug intake, but in three other cases, metabolite detection was of actual forensic interest. The presented results indicate that: (i) the GUS procedure developed is useful to detect a large variety of drug metabolites, which would have been hardly detected using targeted methods in the context of clinical or forensic toxicology; (ii) metabolite structure can generally be inferred from their “enhanced” product ion scan spectra; and (iii) structure confirmation can be achieved through in vitro metabolic experiments or through the analysis of urine samples from individuals taking the parent drug.  相似文献   

13.
A novel online method is developed, using liquid chromatography (LC)-accurate radioisotope counting dynamic-flow (ARC) coupled with a radioactivity detector and mass spectrometer, for metabolite identification in drug discovery and development. This method offers the advantages of improved sensitivity for detecting radiolabeled drugs as well as streamlining the process of identifying and characterizing metabolites. For the purposes of evaluating this method, in vitro human liver microsomal incubations with [(14)C]dextromethorphan are conducted. Online separation and identification of [(14)C]dextromethorphan metabolites are achieved without intensive sample preparation, concentration, or fraction collection. Mass spectrometric analysis identified and characterized the metabolites of dextromethorphan formed by N - and O -dealkylation, correlated well with previously published results. Chromatographic peaks for [(14)C]dextromethorphan and its metabolites are collected online, then infused for extended periods of time at a flow rate of 10 microL/min while maintaining the column pressure. The continuous analytical signal input allowed acquisition of a higher order of multistage fragmentation for both major and minor metabolites. The multistage MS fragmentation pattern obtained for the metabolites allowed defining the sites of metabolism for dextromethorphan. Further evaluations of this method are also conducted using a [(14)C]compound A to check the linearity and sensitivity of the dynamic-flow method. The R(2) value is 0.996 for the dynamic-flow method between 50 and 600 disintegrations per minute (dpm); the limit of detection for LC-ARC is 20 dpm, which is approximately 10 times more sensitive than conventional continuous-flow radioactivity detection techniques. The overall results suggest that the combination of LC-ARC with radioactivity detection and mass spectrometry has great potential as a powerful tool for enhancing the sensitivity of radioisotope measurement in metabolite identification studies during drug discovery and development.  相似文献   

14.
15.
Discovery stage studies that address issues of absorption, distribution, metabolism and excretion (ADME) are vital for lead optimization resulting in new drug candidates. Often pharmacokinetics (PK) is assessed in these experiments without regard for the metabolism of the compound or the potential for metabolites to circulate in vivo. This work presents a strategy for drug level determination and detection of metabolites using dried blood spots for sample collection. Initially, metabolites are detected from microsomal incubations and characterized using tandem mass spectrometry. Data dependent enhanced MS and enhanced product ion (EMS-EPI) scanning with dynamic background subtraction was used on a hybrid quadruple linear ion trap mass spectrometer. On-the-fly background subtraction greatly improved the detection of metabolites. These data were used to build a multiple reaction monitoring (MRM) method for the parent and metabolites. MRM-EPI scanning was used to analyze the extracted dried blood spots from the PK study. Circulating metabolites were detected using MRM and their identities confirmed on the basis of fragment ion spectra collected simultaneously. The use of dried blood spots provides a means for re-analysis of PK samples for metabolite identification without the need for complex sample storage and preparation. Both parent compound and metabolite information can be collected in these studies, resulting in a savings of time and resources.  相似文献   

16.
The study of the metabolic fate of drugs is essential for the safety assessment of new compounds in the drug development process. However, the characterization and structural elucidation of metabolites from in vivo experiments is still a very challenging task. In this paper, we compare a two-dimensional liquid chromatography/mass spectrometry (LC/MS) approach using either a capillary LC/MS system or the recently introduced chip-based nanoelectrospray/MS system (Nanomate) as the second dimension for structural elucidation of metabolites by MS. More than 30 radioactive fractions of a chromatographic separation from a human urine sample were analyzed and 54 metabolites could be identified. The long persisting and stable nanoelectrospray enabled the search for unknown metabolites by precursor-ion scanning experiments followed by product-ion scanning experiments of potential metabolites using a quadrupole time-of-flight (qTOF) mass spectrometer. The number of fragments produced by nanoelectrospray with product-ion scanning was significantly higher compared to LC/MS experiments with in-source fragmentation. Therefore, the assignment of possible modifications in metabolites to certain moieties of the drug could be investigated with higher accuracy. The capillary LC/MS system for the second dimension was more sensitive in the case of low abundant metabolites. These metabolites could not be detected by direct nanoelectrospray infusion, which limits the application of the Nanomate for trace metabolites.  相似文献   

17.
The inhibition potential of drugs towards five major human hepatic cytochrome P450 (CYP) isozymes (CYP2A6, 3A4, 2C9, 2D6, and 2E1) was investigated via cassette dosing of the five probe substrates (coumarin, midazolam, tolbutamide, dextromethorphan, and chlorzoxazone) in human liver microsomes using a 96-well plate format. After microsomal incubations had been terminated with formic acid, the five marker metabolites (7-hydroxycoumarin, 1'-hydroxymidazolam, 4-hydroxytolbutamide, dextrorphan, and 6-hydroxychlorzoxazone) were simultaneously quantified using direct injection/online guard cartridge extraction/tandem mass spectrometry (DI-GCE/MS/MS). Several advantages resulted from the use of a short C(18) guard cartridge (4 mm in length) for DI-GCE/MS/MS, including minimal sample preparation, fast online extraction, short analysis time (2.5 min), and minimal source contamination. In addition, this method demonstrated an inter-day accuracy range from -8.7 - 7.4% with a precision less than 8.3% for the quantification of all the marker metabolites. The inhibition assay for the five CYP isozymes was evaluated using their known selective inhibitors via individual and cassette dosing of the probe substrates. The IC(50) values measured via cassette dosing were consistent with those observed via individual dosing, which were all in agreement with the reported values. In addition, the validated assay was used to evaluate the inhibitory potential of 23 generic drugs (randomly selected) towards the five CYP isozymes. The results suggest the integration of the cassette dosing strategy and the DI-GCE/MS/MS method can provide a reliable in vitro approach to screening the inhibitory potential of new chemical entities, with maximal throughput and cost-effectiveness, in support of drug discovery and development.  相似文献   

18.
Imatinib (Gleevec) is an anticancer drug that inhibits specific protein kinases involved in cell proliferation. Whereas this drug is considered to have opened a new era, various mechanisms of resistance have been associated with imatinib relapse. Drug disposition in cancer cells including influx, efflux and drug metabolism is one mechanism that remains to be more thoroughly investigated. Moreover, recent genomic studies have revealed that some isozymes of cytochrome P450 (CYP) are possibly associated with the treatment outcome. Therefore, this research paper investigates the role of the activity of CYP1A1, 1A2, 1B1, 3A4, 4F2 and 4F3A/B on the fate of imatinib. First, a study of imatinib fragmentation was effected using electrospray triple-quadrupole and linear ion trap tandem mass spectrometers (MSn). Accurate mass determinations were performed at enhanced mass resolution for the identification of some product ions that were not predicted by two fragmentation softwares. Whereas the quadrupole MS was not designed for accurate mass measurement, delta mass errors were below 20 ppm. Then, a biotransformation study was effected in vitro. Imatinib metabolites were produced in microsomal incubations containing CYP isozymes. Imatinib and metabolites were extracted from incubation mixtures by protein precipitation, and supernatants were injected into a liquid chromatography equipment coupled with MS(n). Hydrophobic interaction liquid chromatography resolved one demethylated-, two hydroxy- and three N-oxide metabolites. Various rates of metabolite formation were observed between CYP isozymes. Liquid chromatography with deuterium oxide-containing mobile phase (H/D exchange) or incorporation of (18)O from H(2) (18)O added in the incubations was performed to elucidate the metabolite structure. Various MS(n) product scans (n < or = 4) were acquired on the linear ion trap or on the triple-quadrupole MS. Postulated structures of new metabolites are addressed.  相似文献   

19.
We investigated the application of alkylamines, as additives to the mobile phase, to a quantification method for the metabolites, M-III and M-IV, of TAK-778, which is a new bone anabolic agent, in human serum using liquid chromatography/tandem mass spectrometry (LC/MS/MS). Prior to setting up the analytical method, we found that 1-alkylamines co-existing with M-III and M-IV in the turbo ionsprayed solution formed 1-alkylammonium adduct molecules of these metabolites during the ionization process, and the abundance of the adduct ions was considerably higher than that of protonated molecules ([M + H](+)s) of these metabolites. Based on these findings, we investigated a variety of 1-alkylamines and their spiked concentrations in the mobile phase for LC/MS/MS analysis to obtain higher sensitivities for the quantification of these metabolites. After these examinations, we found that 1-hexylamine at a final concentration of 0.05 mmol l(-1) was the most suitable additive for the mobile phase, and set the selected reaction monitoring (SRM) ions for the 1-hexylammonium adduct molecule and [M + H](+), allowing about a fivefold gain in the SRM chromatographic peak compared with that without 1-hexylamine. The adduct ion was considered to be formed by interaction between the amino group of 1-hexylamine and the phosphoryl group of M-III and M-IV. The internal standard (I.S.) used was deuterated M-III for each metabolite. The analytes and I.S. were extracted with diethyl ether from serum samples at neutral pH and injected into the LC/MS/MS system with a turbo ionspray interface. The limit of quantification for both analytes was 0.5 ng ml(-1) when 0.1 ml of serum was used, and the calibration curves were linear in the range 0.5-100 ng ml(-1). The method was precise; the intra- and inter-day precisions of the method were not more than 5.6%. The accuracy of the method was good, with deviations between added and calculated concentrations of M-III and M-IV being typically within 16.6%. This method provided reliable pharmacokinetic data for M-III and M-IV after the intramuscular administration of TAK-778 sustained-release formulation in humans.  相似文献   

20.
Quantification of small molecules using liquid chromatography/tandem mass spectrometry (LC/MS/MS) on a triple quadrupole mass spectrometer has become a common practice in bioanalytical support of in vitro adsorption, distribution, metabolism and excretion (ADME) screening. The bioanalysis process involves primarily three indispensable steps: MS/MS optimization for a large number of new chemical compounds undergoing various screening assays in early drug discovery, high-throughput sample analysis with LC/MS/MS for those chemically diverse compounds using the optimized MS/MS conditions, and post-acquisition data review and reporting. To improve overall efficiency of ADME bioanalysis, an integrated system was proposed featuring an automated and unattended MS/MS optimization, a staggered parallel LC/MS/MS for high-throughput sample analysis, and a sophisticated software tool for LC/MS/MS raw data review as well as biological data calculation and reporting. The integrated platform has been used in bioanalytical support of a serum protein binding screening assay with high speed, high capacity, and good robustness. In this new platform, a unique sample dilution scheme was also introduced. With this dilution design, the total number of analytical samples was reduced; therefore, the total operation time was reduced and the overall throughput was further improved. The performance of the protein binding screening assay was monitored with two controls representing high and low binding properties and an acceptable inter-assay consistency was achieved. This platform has been successfully used for the determination of serum protein binding in multiple species for more than 4000 compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号